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R
ichard Feynman once wrote that the concept of the atomic structure of the material
world was the most fertile idea we inherited from antiquity. But although the so-called
atomic hypothesis traces its beginnings to the fifth century BC (see box 1), it was only
a century ago, in 1911, that the atom secured its place as the cornerstone of the modern
physical sciences. That year marked two important advances in our understanding

of the microscopic world. First, from the observation that α particles were deflected as they
passed through a thin gold foil, Ernest Rutherford arrived at the planetary model of the atom,
in which electrons orbit a massive nucleus. Second, he evaluated the  angle- differential cross
section for the deflection of the α particles.1

Rutherford’s formula was purely classical—he treated atomic particles as having trajectories
influenced by Coulomb forces—yet it proved remarkably accurate. An identical expression can
be derived quantum mechanically by calculating the scattering amplitude due to Coulomb in-
teraction in the limit of weak scattering, where the first Born approximation holds (see box 2).

The success of Rutherford’s calculations, however, was soon overshadowed by the advent
of quantum mechanics (QM), which triumphed in describing atomic and subatomic processes.
Deemed generally inadequate, the classical approach was neglected until 1953, when Gregory
Wannier, then at Bell Labs, used classical mechanics to derive a law describing near-threshold
atom ionization due to electron impact.2 In the decades that followed, various efforts from an as-
sortment of groups demonstrated the enduring capacity of classical mechanics to elucidate the
structure and interactions of atoms. 

The classical potentials
Interactions between atomic particles fall mainly into three classes: long-range potentials of the
form V(r) = β/r; medium-range potentials of the form V(r) = β/rn, n > 1; and short-range potentials
of the form V(r) = γrηe−αr, α > 0. Here, r is the interparticle distance. The long- and medium-range
potentials—the power-law interactions—derive from the concept of fluxes and force lines. Con-
sidered classical interactions, they include the Coulomb potential, n = 1, and the monopole–
dipole potential, n = 2. (The harmonic oscillator potential, n = −2, is another noteworthy classical
interaction.) The short-range, exponential potentials are typically quantum mechanical and
based on the notion of exchange of intermediary bosons, as in the case of the strong interaction.

With the advent of QM came rigorous criteria for determining when the classical ap-
proach is justifiable. Based on the underlying physical ontology of wave mechanics, the clas-
sical approximation was shown to be applicable when the rate of change of the reduced 
de Broglie wavelength ƛ = ħ/p is small—that is, when dƛ/dr ≪ 1. For a binary collision, the most
common type of atomic collision, the condition reduces to rn−2 ≪ 8μ∣β∣/(ħ2n2) for  power-law po-
tentials, provided β < 0 and the energy of the system is small. Here, μ is the reduced mass. 

In the case of the Coulomb interaction, for which n = 1, the criterion becomes r ≫ ħ2/(8μ∣β∣).
The classical approximation is therefore applicable for asymptotically large interparticle dis-
tances, a result that turns out to be of particular importance for modeling near-threshold
processes. For the mono-
pole–dipole interaction,
where n = 2, the condition
is fulfilled as long as the
interaction term is strong
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Decades after the 1920s rise of quantum mechanics, the classical
mechanical framework remained a useful lens through which to

examine ionization, scattering, and other atomic processes. 
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enough—specifically, when ∣β∣ ≫ ħ2/2μ. For n > 2,
the classical approximation is valid only when the
particles are close, approximately within one Bohr
radius of each other. The short-range, exponential
potentials are essentially beyond the reach of classi-
cal approaches. 

The ontological and epistemological bridge be-
tween the classical and quantum mechanical domains
is embodied in Niels Bohr’s correspondence principle.
It stipulates that semiclassical results—specifically,
those based on Bohr’s old quantum theory, in which
orbital electrons have quantized energy but otherwise
obey Newton’s laws of motion—should converge
with quantum mechanical ones in the limit of large
quantum number. For large principal quantum num-
ber N and reasonably large angular momentum quan-
tum  number l, one may thus speak of an electron as
having a trajectory. It was on that principle that Louis
de Broglie posited the wave nature of particles. 

But are there circumstances in which semiclassi-
cal and quantum mechanical results coincide for all
values of quantum numbers? Provided one ignores
the spin variable—an essentially quantum mechanical

quantity—the answer is yes: for power-law potentials
having n = 1 or n = −2. That result is among what’s
known as the correspondence identities,3 and consid-
ering that n = 1 and n = −2 potentials describe arguably
the two most important interactions in physics—the
Coulomb and harmonic-oscillator interactions—its
methodological and historical significance cannot be
overstated. It explains the considerable success of
QM’s predecessors—Max Planck’s quantum physics
and Bohr’s old quantum theory. And one can only
guess to what extent the discovery of the nucleus
might have been delayed had it not been for the co-
incidence of classical and quantum mechanical cross
sections for Coulomb interactions. Alternatively, one
might argue that QM would have appeared sooner
had shortcomings in the old quantum theory not been
masked by the special properties of n = 1 and n = −2
potentials. The correspondence identities also help to
explain, albeit implicitly, why classical mechanics suc-
cessfully describes so many physical phenomena, par-
ticularly near-threshold processes.

Near-threshold fragmentation
In 1953 a seminal paper on classical atomic physics
made its debut. Written by Wannier, it presents a gen-
eral classical framework for describing near-threshold
fragmentation of atomic systems.2 Near-threshold
modeling remains arguably the most fruitful applica-
tion of the classical approach; Wannier’s paper opened
an entirely new field spanning theoretical physics,
atomic physics, and even celestial mechanics. Interest-
ingly, Wannier, a  solid-state physicist, published only
two papers in atomic physics in his career. His brief
excursion into the realm of atoms, however, turned out
to be remarkably fertile. 

Without specifying any particular system or
type of interaction, Wannier’s model assumes that a
violent collision can be described as having three
stages, as depicted in  figure 1. Leading up to the col-
lision, reactants (A and B in the figure) approach
each other along a path known as the entrance chan-
nel. Postcollision, the products (C, D, and E) escape
via the exit channel. The collision itself proceeds via
an intermediate compound state, in which all con-
stituents are strongly coupled.

The centerpiece of Wannier’s model is a quasi-
ergodic hypothesis: Particle trajectories inside the com-
pound state are sufficiently irregular, almost chaotic in
fact, that the particles have no favored path of escape.
In other words, there is no singularity in the relevant
distribution functions prior to particles emerging from
the compound state and into the exit channel.4

In a system with only short-range interactions,
particles outside the compound state move practically
freely, and their trajectories can’t be computed classi-
cally. In a system with long-range and  medium-range
interactions, however, there exists a quasi -asymptotic
region beyond the compound state, in which inter-
particle forces subside gradually. Thus classical treat-
ment of, say, near-threshold ionization is possible.

Adopting Wannier’s model, one may consider
without loss of generality an ionization in which the
energy Eim of an impinging electron is exactly equal to
the ionization energy Ethr of a target atom. The total en-
ergy, E = Eim − Ethr , is zero. Both electrons in a single

42 May 2012 Physics Today www.physicstoday.org
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Box 1. A brief history of the atom
The concept of the atom arose in the fifth century BC in the Abderian
region of northern Greece. Presumably conceived by Leucippus, prede-
cessor of the famed philosopher Democritus, the atomic hypothesis was
the Abderian response to an existential puzzle known as the Eleatic chal-
lenge: In short, What can explain the plurality of things found in nature?

Leucippus’s idea, that indivisible particles constitute the backdrop of
the physical world, was further pursued by Epicurus, who identified a
number of empirical phenomena that seemed to corroborate the idea
of microscopic particles moving chaotically in the void. The most popu-
lar exposition of the atomic concept, later extended by Epicurus, was
authored by Lucretius in the first century BC:17

It clearly follows that no rest is given to the atoms in their
course through the depths of space. Driven along in an in-
cessant but variable movement, some of them bounce far
apart after a collision, while others recoil only a short dis-
tance from the impact. . . . Then those small compound bod-
ies that are least removed from the impetus of the atoms are
set in motion by the impacts of their invisible blows and in
turn cannon against slightly larger bodies. So the movement
mounts up from the atoms and gradually emerges to the
level of our senses, so that those bodies are in motion that
we see in sunbeams, moved by blows that remain invisible.

As fertile as it was, the atomic hypothesis suffered from a major deficiency:
Its authors happened to be atheists. Subsequent generations were
reluctant to accept the atom, and the concept remained buried in reli-
gious animosity for nearly two millennia. Plato never mentions Democri-
tus, and the Abderian thinker, arguably as great a mind as Plato and Aris-
totle, was relegated to obscurity until the late Renaissance. (The gods
were kinder to Democritus than were his fellow mortals and allotted him
93 years of life—or 109, according to some authors.)

The atomic hypothesis was revived by a number of European scien-
tists, including Pierre Gassendi in the 17th century and John Dalton in
the 18th. Atoms became the subjects of chemistry and the basis for sta-
tistical models of gases. In the late 19th century, with Jean Perrin’s obser-
vation of Brownian motion in a colloidal suspension, the concept of the
atom returned at long last to the realm of physics.
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ionization—or n + 1 electrons in an n-fold ionization—
must escape the compound state with equal shares of
energy if they are to both reach the asymptotic regime.
The overall potential of the system should be minimal,
which in turn requires a maximally symmetric final
configuration. In the case of single ionization, that
means the two electrons escape in opposite directions
along the same straight line. In a double ionization, the
three electrons’ escape trajectories lie at 120° angles.
The maximally symmetric, zero-energy trajectories are
known as the leading, or scaling, configuration. One
can show that since the number of leading configura-
tions is smaller than the number of all possible exit-
channel trajectories, the probability of ionization must
be zero at the energy threshold.

As the total energy of the system increases from
zero, the cross section becomes finite. Wannier de-
scribes such near-threshold behavior in terms of the
energy dependence of the fragmentation cross sec-
tion σ in the zero-energy limit. In most cases the
threshold law assumes the simple form σ ~ Eκ,
E → +0, and the problem reduces to evaluating the
exponent κ, which need not be a real number.

In deriving his threshold law, Wannier made
use of two important points: First, the rate of change
of the phase space of potential escape trajectories
can be encompassed in a single variable; second,
scaling laws may be applied in deriving classical so-
lutions. The former greatly simplifies numerical in-
tegration, and the latter facilitates analytical calcu-
lations. For example, if ri(t) is a solution for a
coulombic system with energy E, then θri(θ3/2t) is a
solution for one with energy θ−1E.

Wannier found that in the asymptotic zone, an
electron moves along the leading trajectory accord-
ing to r3 = (9e2Z′/2me)t2, where Z′ is the effective
charge of the nucleus, me is the electron mass, and e
is the electric charge. Notably, the particle trajectory
is independent of energy when the energy is small.
Readers familiar with the standard cosmological
model will recognize that the t2/3 dependence also de-
scribes the evolution of the cosmic scale factor. Since
coulombic and Newtonian forces follow the same de-
pendence on interaction distance, atomic and celes-
tial systems have much in common. As a result, the
Wannier model contains the essential features of the
Big Bang concept. Indeed, Georges Lemaître, author
of a precursor to the Big Bang theory, made extensive
use of the concept of a “cosmic atom” in his model of
an expanding universe.5

Formally, describing the near-threshold behav-
ior of any fragmentation process amounts to deter-
mining how the phase space of potential escape tra-
jectories shrinks as E → +0. By considering small
deviations in trajectory from the leading configura-
tion, Wannier obtained the threshold exponent κ for
a three-body coulombic system:

where mi and qi are the mass and charge of the ith
particle, respectively, and particles 2 and 3 are
identical.6 For q = −1 and m1 ≫ m2, which corre-

sponds to the ionization of hydrogen by electron
impact, the formula returns κ = 1.1269.

Note, however, that when q = −4, κ diverges. At
first, few people paid attention to that possibility, in
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Figure 1. Near-threshold collision can be thought of as a three-
step process. Reactant systems (A and B) approach and then thor-
oughly interact in a strongly coupled compound state. If the con-
stituent particles acquire enough kinetic energy, they overcome the
attractive Coulomb forces that prevail in the quasi-asymptotic region
and escape into asymptotic space as products (C, D, and E). This par-
ticular illustration depicts the ionization of hydrogen by an electron.

Box 2. Where classical and quantum converge
Ernest Rutherford’s classical formula describing the cross section σ for
deflection of α particles by gold-foil atoms reads 

where θ is the deflection angle, dΩ is a differential solid angle, and F(E)
depends essentially on the impact energy E, charge, and atomic numbers
of the particles.18 The same expression is derived quantum mechanically
by calculating the scattering amplitude for the Coulomb interaction with-
in the first Born approximation. For collisions between identical particles,
the quantum mechanical solution in the center-of-mass frame is

where the parameter κ is inversely proportional to the particles’ mutual
velocity. The last term arises due to quantum mechanical exchange and
cannot be obtained via classical theory. However, it vanishes in the limit
of small velocity, in which case the cosine term oscillates rapidly and
cancels over observable length scales. Then, if one of the particles is
fixed in the laboratory frame, the scattering formula reduces to that of
Rutherford, after the proper coordinate transformations.

d

d

σ

Ω
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part because such systems are both experimentally
and theoretically cumbersome, even in the simplest
possible case: Be4+ + Be3+ → e + 2Be4+. After carrying
out numerical investigations of several model sys-
tems,6 we arrived at a threshold law of the form

with λ = 0.33 if E is in atomic units. That singular case
was discussed in the broader context of near-
threshold phenomena in reference 4. In particular,
limitations of the Wannier approach were pointed
out, and theoreticians were urged to contrast its pre-
dictions with those of QM. Subsequent analytical cal-
culations largely confirmed the classical numerical re-
sults and further developed the subject in the process.7

Expressions for the near-threshold behavior of
the fragmentation cross section prove to be of con-
siderable value. For instance, they facilitate precise
estimation of energy thresholds, which are difficult
to determine experimentally. Other features of frag-
mentational collisions, including the final energy
distribution, mutual-angle behavior, and angular
momentum distribution, are also important. In the
decades following the introduction of Wannier’s
model, a variety of classical approaches were devel-
oped to model various aspects of atomic collisions.

We highlight two that might be considered as occu-
pying opposite ends of a spectrum: classical-
 trajectory Monte Carlo (CTMC), an ab initio semi-
classical approach developed by Ian Percival and
coworkers at the University of Stirling in the UK;
and a purely classical, phenomenological approach
conceived by a Warsaw University group led by
Michał Gryziński.

The Stirling school
In the late 1960s, Percival and coworkers developed a
versatile computer code, classical- trajectory Monte
Carlo, for modeling three-body systems of charged
particles, two of which are identical.8 (For an instruc-
tive review of classical simulations before 1968, see
reference 9.) Eschewing Wannier’s reliance on a quasi-
ergodic compound state, Percival’s approach was to
calculate the full-collision particle trajectories, includ-
ing in the strong interaction region where the classical
approximation need not be legitimate. Given the sys-
tem energy, CTMC finds the probability of escape
based on a statistically large sampling of initial con-
ditions. In that sense, it preserves the probabilistic na-
ture of the quantum mechanical formalism. 

In Percival’s model, the target atomic system re-
tains as many quantum attributes as possible. Atoms
are treated as having Keplerian electron orbits en-
dowed with bound-state energies and variable orbital
angular momenta, as prescribed by old quantum the-
ory. The electrons exhibit a classical velocity distribu-
tion that coincides with the quantum mechanical
one—another consequence of the correspondence
identities.8 Basically, the quantum mechanical nature
of the bound systems is duly recognized but incorpo-
rated into a more transparent, albeit approximate,
classical picture. Aside from the classical approxima-
tion, no further dynamical approximations are made.

With proper modifications, CTMC can be used
to numerically calculate near-threshold ionization,
excitation, and other small energy processes (see
 figure 2). And although it was originally devised for
coulombic systems, various researchers modified it
for other types of interactions. One version of the
model was used to simulate detachment of an elec-
tron from H− (e + H− → e + H + e), the subject of
much classical and quantum mechanical investiga-
tion.10 The complete analytical description of the
process remains elusive, and theorists have instead
resorted to approximating the process with
 electron–atom and  electron– negative ion model in-
teraction potentials. Figure 3 contrasts some of the
theoretical results with experiments and with re-
sults obtained via CTMC. 

Qualitatively, the CTMC results compare favor-
ably with the theoretical ones, except that they predict
a threshold energy about 1 eV higher than the exper-
iments indicate. The shift turns out to be a conse-
quence of Coulomb repulsion, which creates a poten-
tial barrier in the entrance channel of the impinging
electron. In a quantum mechanical system, the barrier
is overcome by quantum tunneling, but no such phe-
nomenon exists in classical mechanics. Interestingly,
with the proper choice of the three-body potential
function, it is also possible to use CTMC to evaluate
the cross section for e + H− → e + H + e → H− + e, in

σ~ e−λ/ E√‾

44 May 2012 Physics Today www.physicstoday.org

Classical atom

a

b

Figure 2. Classically calculated trajectories of a hydrogen-atom
electron (blue) and an impinging electron (red). In (a), the incoming
electron excites the H atom; in (b), the atom is ionized.
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which an impinging electron substitutes a loosely at-
tached H− electron. That cross section turns out to be
exceedingly small.

The Warsaw school
In contrast to the Stirling school, Gryziński and his
colleagues modeled atomic collisions according to
quantum mechanical phenomenology.11 The atom
is treated as a deterministic Newtonian dynamic
system and the quantum mechanical formalism is
considered redundant, but quantum mechanical
observations are taken into account. For example,
in Gryziński’s model of the H atom, the bound elec-
tron has zero orbital angular momentum: Instead
of tracing a circular or elliptical orbit, it oscillates
along a free-fall trajectory that ends at the nucleus.
(Elaborations on the free-fall model can account for
electron spin in the form of a physical dipole, which
results in a Lorentz force that prevents the electron
from actually penetrating the nucleus.) The free-
falling electron gives rise to a time-dependent in-
teraction potential for distant atoms:

V(r,t) = [Qm(r)/rm+1] + [Qn
ω(r)/rn+1]sin(ωt),

where Qm and Qn denote the leading electric multi-
poles and their Fourier components. The time-
dependent term captures the statistical nature of
the real atomic structure. From the 1960s on,
Gryziński and colleagues made prolific use of the
free-fall model, investigating the structural and
collisional properties of an assortment of atoms
and molecules. (See  figure 4.)

After some early success and an initially favor-
able reception from the atomic-physics community,
questions arose as to the reliability and ideological
soundness of the Warsaw school’s approach. Since
both classical and semiclassical approaches were
generally viewed as dissident, objections were to be
expected. More condemning was the criticism from
the semiclassical community, which gradually took
the position that a purely classical view of the mi-
croscopic world cannot be justified. 

The classical atom at 100
The field of classical atomic physics is too wide for
us to fully capture the breadth of its influence and
the extent of its community of contributors. The
Saint Petersburg group led by Valentin Ostrovsky,12

Ronald Olson’s group at the Missouri University of
Science and Technology,13 and Modris Gailitis and
coworkers in Riga, Latvia,14 are just a few of the key
contributors who have helped to advance theoreti-
cal and numerical aspects of classical models.  

The continuing value of the classical approach
is at least twofold. For one, classical calculations are
often more analytically tractable than their quan-
tum mechanical counterparts. Also, from a heuristic
point of view, the classical picture provides a
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Figure 4. Two classical atomic
models. (a) Whereas the Bohr
model of the atom describes
bound electrons as tracing
circular or elliptical orbits, 
the so-called free-fall model
describes the electrons as
oscillating back and forth
along radial trajectories that
end at the nucleus. (b) The
free-fall model, though un-
orthodox, yields favorable
predictions for the cross sec-
tion for helium ionization by
proton impact. (Adapted
from ref. 11.)

Figure 3. The cross section for detachment of a loosely bound elec-
tron from a negative hydrogen ion, e + H− → e + H + e, as computed
quantum mechanically (the various dashed curves), simulated via
classical- trajectory Monte Carlo (solid curve), and observed in experi-
ments (symbols). (Adapted from ref. 10.)
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deeper, more transparent understanding of micro-
scopic entities, whereas quantum mechanical for-
malisms tend to conceal them. That is not to be un-
derstood as a defect of the quantum approach. On
the contrary, given that even expert physicists find
the fundamental theory of QM difficult, if not im-
possible, to comprehend, classical models are a use-
ful conceptual aid.

Classical atomic physics, one might say, is the
answer to the question, What would have become
of theoretical atomic physics had QM not
emerged? But the opposite question is also of epis-
temological importance: In a world viewed solely
through the lens of classical mechanics, what
would have emerged as the counterpart to QM?
Arguably, the role of QM would have been played
by classical statistical physics. In fact, probabilistic
models for the scattering processes have been de-
vised as counterparts of the quantum mechanical
calculations.15 With the help of nonlinear dynam-
ics, many quantum effects can be reproduced with
classical theory.

It’s also interesting to note that just as classical
methods have made meaningful appearances dur-
ing the era of QM, some concepts regarded as essen-
tially quantum mechanical can be traced back to the
classical antique.16
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