Analiza fotometryczna planetoid w programie 'Canopus'

Program *Canopus* został napisany przez Briana D. Warnera i jest on powszechnie używany do analizy obserwacji asteroid. W przeciwieństwie do większości programów do fotometrii *Canopus* nie ma problemu z analizą zdjęć, na których znajduje się poruszający obiekt. Posiada również wbudowane katalogi gwiazd i planetoid (MPOSC3, USNO, UCAC 2, UCAC 3, APASS), co znacznie ułatwia lokalizacje obiektów na wykonanych zdjęciach.

Poniżej przedstawiony proces korzystania z programu Canopus powstał na podstawie przetłumaczonych przeze mnie fragmentów "The MPO Users Guide - A Companion Guide to the MPO Canopus/PhotoRed Reference Manuals", oraz dodatkowo uzupełniony został moimi spostrzeżeniami przy korzystaniu z programu.

1. Konfiguracja programu

Właściwe ustawienia w oknie konfiguracji są ważne dla łatwiejszej i dokładniejszej analizy fotometrycznej planetoid. W niektórych przypadkach oznacza to różnicę między dopasowaniem obrazu do zestawu gwiazd porównania.

Okno konfiguracji pozwala na zapisywanie wielu konfiguracji pod różnymi nazwami. Ustawienia są przechowywane w rejestrze systemu Windows. Po utworzeniu i zapisaniu możemy szybko przywołać ustawienia dla danego teleskopu (kamery) wybierając wcześniej zapisany profil.

Korzystając z przycisku *Configuration* zakreślonej na czerwono, lub używając kombinacji klawiszy *Shift+Ctrl+C*, albo wybierając z menu głównego "*Plik* | *Konfiguracja*" zostaje wywołane okno konfiguracji.

	MPO Canopus - Research Level Astrometry and Photometry (cge)					x
File	: Image Photometry Utilities Pages Help PhotoRed					
1	M 部 團 🖸 孫 🗟 堂 🔽 🔁 🔶 🔺 🔶 [Apertures] 13/13/2/5	Refs: 00	Offset: 00.000	SD: 0.000	Sess: None	m

Configuration Settings							
General MPC Catalogs Charting Photometry							
Profile duzy_po_sierpirn2012 Delete							
Long 20 4 3,0 W Lat 49 34 9,0 N 🗸							
Elev (m) 1000 UT Offset 00:00:00 🔽 Behind UT							
F.L. 2400,000 In. C mm @ e/ADU 1,50							
Col (pix) 1024 Size 13,000 Size units							
Rows (pix) 1024 Size 13,000 Carcsec							
Header Exposure Time Prompt for time mode □ C Start							
Miscellaneous							
High precision Min: 1024x768 Root Dirs							
Double star precession Image Scaling Image Scaling Auto Save Critical User Files Image Scaling Enabled Image Scaling Enabled Image Scaling Path D:\dokumenty\Astronomia\DI							
To Text OK Cancel ? Help							

Okno konfiguracji ma kilka kart. Powyżej widzimy kartę *General*, w której należy wypełnić dane dotyczące położenia miejsca obserwacji: długość i szerokość geograficzną, wysokość nad poziom morza (widoczne dane powyżej dotyczą Obserwatorium Astronomicznego na Suhorze).

Należy wprowadzić wartość przesunięcia czasu UT. Ważne jest by pamiętać, że to nie jest różnica pomiędzy czasem UT i czasem systemowym komputera, lecz między czasem zapisanym w nagłówku naszego zdjęcia. W przypadku moich obserwacji wartość ta jest 0:00:00, czyli czas zapisany w nagłówku FITS jest czasem UT. Następny ważny parametr to ogniskowa. Należy pamiętać by dobrać właściwą jednostkę (mm lub cale).

Wartość e/ADU, jest współczynnikiem konwersji z elektronów (wytworzonych w materiale matrycy CCD przez padające fotony) na tzw. *zliczenia* (ADU) odczytywane przez elektronikę. Wartość ta jest podana przez producenta kamery. Powinna być to wartość dodatnia, jednak jeśli nie jest znana należy wpisać 2,3.

W okienkach *Col (pix)* i *Rows (pix)* wpisujemy liczbę kolumn i wierszy w obrazach. Program zwykle czyta tę informację z nagłówka FITS, ale dobrze jest by wprowadzić niezależnie w oknie konfiguracji prawidłowe wartości.

Następnie uzupełniamy rozmiary piksela używając właściwej jednostki: mikrometrów lub sekund łuku.

Wybieramy odpowiedni czas ekspozycji. Wybierając "Start" – czas z nagłówka FITS jest czasem rozpoczęcia ekspozycji. "Mid" – oznacza środek czasu ekspozycji, natomiast "End" – jest czasem końca ekspozycji.

Jeśli występuje problem z wykonaniem *AutoMatch*, należy zaznaczyć "*Ignore OBJECT KW*" i/lub *"Ignore FL/Pix Size"*. Jednak w tym przypadku, wartości *Col (pix)* i *Rows (pix)*, wielkości piksela ogniskowej muszą być dokładnie podane.

Dwie następne zakładki *MPC* i *Catalogs* zazwyczaj są mniej istotne dla podstawowego działania programu. Należy jednak w tych kartach uzupełnić tak dane, by były zgodne z naszymi ustawieniami. Na przykład zakładka *MPC* jest istotna podczas generowania raportu do Minor Planet Center, więc powinna zawierać właściwe (nasze) dane, a nie domyślne. (Uwaga: jeśli pola danych kontaktowych w zakładce *MPC* nie zostały zmienione, program zgłosi błąd podczas próby analizy obrazków).

Configuration Settings	Configuration Settings
General MPC Catalogs Charting Photometry	General MPC Catalogs Charting Photometry
COD XX ID 1 BND No TYP UNIDENTIFIED COM CON1 ewa@astro.as.up.krakow.pl	Image: Mathematical Matrix Matrix
CON2	
OBS J. Q. Astronomer	Min -10 Max 100 Silver 🔽 🗸 Astr.
MEA J. Q. Astronomer	
TEL 0.5m f/8.1 Ritchey-Chretien + CCD	
NET USNO A2.0	
ACK Your astrometry report was received	
AC2	Min -10 Max 100 Money Green 💽 🗸 Astr.
TO mpc@cfa.harvard.edu	
New MPC Format	Min -10 Max 100 Money Green ▼ Astr.
To Text OK X Cancel ? Help	To Text OK X Cancel ? Help

Karta Charting

Niektóre z ustawień w tej karcie będą miały wpływ na działanie programu przy dopasowaniu obrazu do wykresu gwiazd odniesienia.

Configuration Settings
General MPC Catalogs Charting Photometry
Charting Options
🔲 Bin Magnitudes 📄 Draw Dates
🗖 Fill Stars 🔽 Draw Messier
🗖 Reverse E/W 🔽 Draw DSO
🗖 Reverse N/S 🔽 DSO Labels
LONEOS Plot stars Use for astrometry Show LONEOS/User labels
Rotate 0 °CW Max Scale Diff. 3, 0
Match Stars 20 AM Table MPCORB 💌
Match Angle 30
To Text OK Cancel ? Help

Należy sprawdzić pola "*Reverse E/W*" i "*Reverse N/S*" i wprowadzić odpowiednie wartość w polu "*Rotate*", tak aby obraz wygenerowany przez *"matches*" miał porównywalną skalę i orientację jak zdjęcie.

W momencie, gdy pola *Reverse* są nie zaznaczone, a w oknie *Rotate* widnieje wartość zero, *Canopus* przyjmuje następującą orientację:

Ustawienie "Max Scale Diff" może mieć wpływ podczas operacji AutoMatch.

Po wykonaniu *AutoMatch* program sprawdza oryginalną skalę wykresu w odniesieniu do wartości po *match* i znajduje stosunek najmniejszej do największej. Zatem ta wartość jest zawsze 1.00 lub większa. Jeśli wskaźnik przekracza tę ustalona wartość program nie jest w stanie dokonać *AutoMatch*.

Ostatnią kartą w oknie konfiguracji jest Photometry.

W oknie tym znajduje się wiele ustawień, które powinny być zmieniane w zależności od dokonywanej analizy.

Configuration Settings							
General MPC	Catalogs Charting Photometry						
Default Filter ○ B ○ C ○ V ○ g' ○ R ○ r' ○ I ○ i'	Default Dark C						
Photometry M Method © Derived © Instrumenta © Transformer © Trans. Absc Miscellaneous	Agnitudes Plot Method Plot Method Plot BMP Size C 640 × 480 C 800 × 600 Plot 24 × 768 C 120 × 900 C 2400 × 1800 C 2400 × 1800 C Custom Save Options						
Heliocentric Times Saturation 65000 Periold in Days Ignore Saturation Show M/IR form Max MIR s.d. 0.05 Min SNR 10							
To Text	✔ OK 🗶 Cancel 斉 Help						

W części *Default Filter* należy zaznaczyć filtr w którym były prowadzone obserwacje. Wartość "*Max MIR s.d.*" można ustawić w zależności od naszego upodobania. Podczas *AutoMatch* program ustanawia *Magnitude/Intensity Relationship (M/IR)*. Aby znaleźć *M/IR*, Canopus automatycznie usuwa gwiazdy nadmiernie jasne (obliczona wartość jest porównywana z wielkościami katalogowymi). Wartość tego parametru jest poziomem używanym, aby usunąć gwiazdę. Jeżeli przekracza ona tę wielkość, nie jest wtedy brana pod uwagę w dalszej analizie. W przypadku ustawienia zbyt niskiej wartości, np. 0,01 mag, można uzyskać niewystarczającą liczbę gwiazd. Jeśli ustawiona jest zbyt wysoka, np. 0,2 mag, to odchylenie standardowe dla całego rozwiązania wzrasta dramatycznie.

Zaznaczenie pola "*Ignore Saturation*" powoduje, że program mierzy i wykorzystuje gwiazdy, których obraz zawiera piksele powyżej wartości "*Intensity*".

Aby zapisać bieżące ustawienia należy kliknąć <OK>, by zamknąć okno konfiguracji bez zmian i powrócić do ustawień jakie były w momencie jego otwarcia należy kliknąć <Cancel>, jeśli chcemy zapisać ustawienia do pliku tekstowego należy kliknąć przycisk <To Text>. Może być to przydatne, jeśli potrzebujemy pomocy technicznej.

2. Wczytanie obrazka

Canopus może otworzyć pliki: FITS, SBIG, BMP i JPG. Jednak tylko dla dwóch, FITS i SBIG, program pozwala na wykonanie *AutoMatch* obrazu. Do pracy naukowej powinno się jednak

stosować pliki FITS – jest to standardowy format. (Zauważmy jednak, że istnieje wiele "standardów" dla plików FITS. Oprogramowanie MPO dokłada wszelkich starań, aby stosować się do tych, których definicja znajduje się w <u>http://fits.gsfc.nasa.gov/fits_home.html</u>)

Aby otworzyć zdjęcie można wybrać z menu "Image | Open image" lub nacisnąć konfigurację *Ctrl+O* (O jest dużą literą). Spowoduje to wyświetlenie okna dialogowego pliku *Open Image File*, w którym można wybrać zdjęcie. Lista pięciu ostatnio otwieranych obrazów znajduje się w menu *Image*. Ułatwia to pracę, gdy potrzebujemy przeładować jedno ze zdjęć bez konieczności przechodzenia przez otwarte okno dialogowe Windows.

3. Ustawienie apertur

Apertury pomiarowe są używane do definiowania obszarów na obrazie, aby znaleźć jasność badanego obiektu (ozn. "*target*"), oraz jasność tła nieba.

Jak widzimy na powyższym rysunku istnieją trzy współśrodkowe okręgi, wyśrodkowane na wspólnym punkcie. Najbardziej wewnętrzny okrąg zawiera docelowy obiekt tzn *"target aperture"*, a suma wartości pikseli wewnątrz tego obszaru określa jasność obiektu. Pole na zewnątrz *target aperture*, a kolejnym, środkowym okręgiem, tworzy pierścień, którego powierzchnia jest nazywana *"the dead zone"*, czyli martwa strefa. Piksele w tym regionie są całkowicie ignorowane. Jest to strefa buforowa pomiędzy regionem, który określa obiekt i regionem, który określa tło nieba, tak że piksele w pierścieniu nie są liczone podwójnie.

Najbardziej zewnętrzny okrąg wyznacza zewnętrzną granicę pola "*sky annulus*", natomiast pierścień strefy martwej określa jego wewnętrzną granicę. Piksele w tym obszarze służą do obliczenia tła nieba. Średnia wartość jest następnie odejmowana od wartości każdego piksela w aperturze obiektu tak, że pozostaje jedynie jego wynik, a nie dodatkowo jeszcze tła nieba.

Aby wywołać okno, w którym możemy ustawić wielkości poszczególnych apertur należy wybrać przycisk *Apertures* zaznaczony na czerwony z głównego paska narzędzi:

MPO Canopus - Research Level Astrometry and Photometry (cge)			Į		x
File Image Photometry Utilities Pages Help PhotoRed					
	Refs: 00	Offset: 00.000	SD: 0.000	Sess: None	

Ukarze się nam okno Apertures Settings:

Aperture Settings		— X
Width/Height M	UST be ODD	
Circular 🔽	<f9> Copy</f9>	Copy Target
Width 11 Height 11 Botation 0	Dead 2 Sky 5	Defaults
Comparisons Circular V Width 11 Height 11	Comp1 = Lime Dead 2 Sky 5	
Astrometry Circular		? <u>H</u> elp
Width 11 Height 11 Rotation 0	Dead 2 Sky 5	VOK

Można zdefiniować zestawy przysłon dla trzech typów obiektów: obiekt, np. asteroida, gwiazdy porównania, oraz astrometria (przy pomiarach pól gwiazd podczas *AutoMatch*).

Wartości dla szerokości i wysokości apertur mogą być różne, ale obie muszą być liczbami nieparzystymi. Wartości dla "*Width*" i "*Height*" to szerokość i wysokość apertury "*Target*" w którym znajduje się obiekt (asteroida, gwiazda). "*Dead*" oznacza szerokość martwej strefy, natomiast "*Sky*" szerokość strefy tła nieba. Można ustawić apertury obiektu niezależnie od apertur gwiazd porównania. Jest to przydatne, jeśli obserwowany obiekt porusza się szybko, więc obiekt i/lub gwiazdy porównania są rozciągłe.

Apertury nie muszą być symetryczne: można tak ustawić ich wysokość i szerokość, aby kształt był eliptyczny. Ustawiając kształt dla obiektu (planetoida, gwiazda porównania), kształt martwego pola i tła nieba będzie taki sam, gdyż te dwa pola są definiowane w odniesieniu do apertury obiektu.

Można ustawić kąt obrotu niesymetrycznego zestawu przysłony. Na przykład, jeżeli apertury mają kształt eliptyczny, w których wysokość i szerokość nie są takie same, można obracać elipsę, by dopasować do obrazu rozciągłego, szybko poruszającego się obiektów.

Można użyć różnych kolorów do oznaczenia apertur obiektu i gwiazd porównania. Ja

korzystałam z ustawień domyślnych: planetoida – apertury żółte, gwiazdy porównania – apertury czerwone.

Podczas użycia kreatora krzywej blasku, gdzie analizowana jest seria obrazów, Canopus oznacza aperturą jasno zieloną tzw "*gwiazdę kotwicę*" (*"anchor star*"), czyli jedną z gwiazd porównania (domyślnie pierwszą), która służy do zlokalizowania wszystkich innych obiektów w odniesieniu do jej położenia.

4. AutoMatch

Jedną z najczęstszych i najważniejszych czynności przy użyciu programu jest tzw. *AutoMatch.* Jest to operacja, w której *Canopus* odczytuje informacje z nagłówka zdjęcia i/lub ustawień konfiguracji, generując wykres gwiazd względem środka domniemanego centrum obrazu, z tym samym kątem obrotu i skalą jak zdjęcie. Oznacza to, że wykres jest tak tworzony, by dla każdej gwiazdy na zdjęciu, odpowiadająca gwiazda na wykresie była w tej samej odległości i pod tym samym kątem od środka wykresu. Matematycznie, gwiazda ma te same współrzędne biegunowe na obrazie i wykresie, z których oba mają ten sam punkt wyjściowy na niebie.

Znajdowane są tzw *"plate constants"(stałe pola*), co pozwala przeliczyć współrzędne (X,Y) punktów, na współrzędne rektascencji i deklinacji (dzięki temu *Canopus* jest w stanie określić współrzędne asteroidy podczas tworzenia raportu do Minor Planet Center).

Przed dokonaniem *AutoMatch* należy skonfigurować program odpowiednio do danych obserwacji i ustawić właściwe apertury, a następnie załadować obrazek.

Proces *AutoMatch* można wywołać za pomocą kombinacji klawiszy *Ctrl+A*, lub wybierając z menu "*Image* | *Auto match/measure*". Na wykresie (lewa część okna) pojawi się najpierw zestaw kolorowych linii, a po kilku sekundach linie te zastąpione zostaną ponumerowanymi punktami. Natomiast na obrazie (prawa część okna) wokół gwiazd pojawią się apertury czerwone, a planetoida będzie zaznaczona żółtą aperturą. Widok ten jest pokazany poniżej:

Przejdźmy teraz do strony *Reductions*: wybierając z menu "*Pages* | *Reductions*", wybierając kombinacje klawiszy *Ctrl+3*, lub klikając na pasku narzędzi ikonki zaznaczonej na czerwono:

MPO Canopus - Research Level Astrometry and Photometry (cge)					x
File Image Photometry Utilities Pages Help PhotoRed					
	Refs: 00	Offset: 00.000	SD: 0.000	Sess: None	

Ukazuje nam się następujące okno:

🔛 М	PO Canopus	- Research	Level A	strometry and	l Photometŋ	(cge)									_ D <mark></mark>
File	Image Ph	otometry	Utilitie	s Pages H	elp PhotoF	Red									
5	a 2 🏢	v 🗷 🛙		⊻ ⊵ →	▲ ► [Aperture	s 13/13/2/	'5				Refs: 15	Offset: -18,703	SD: 0,023	Sess: None 🧾
36	Zone	#	U	RA	DEC	Mg	X Y	,	RARes	DCRes				Fixed	Data
1	MP03J1840	-0938139	×	18:40:44,95	-09:38:13,9	9,77	103,364	344,626	0,16041	-0,25941			(Date	2012-05-04
2	2 MP03J1841	-0934193	×	18:41:23,99	-09:34:19,3	10,1	411,534	453,394	0,13485	-0,04467				U.T.	00:31:06
3	8 MP03 J1841	-0945077	×	18:41:25,89	-09:45:07,7	10,8	410,062	113,507	-0,13090	-0,08586				Aprox	imate Center
4	MP03J1841	-0942073	×	18:41:10,04	-09:42:07,3	11,0	291,830	213,526	-0,04853	-0,23414				RA	18:41:12
5	5 MP03J1841	-0939513	×	18:41:30,47	-09:39:51,3	11,5	453,433	277,313	0,00565	-0,16509				Dec	-09:40
6	6 MP03J1841	-0946490	×	18:41:18,11	-09:46:49,0	11,7	347,336	63,406	-0,11306	0,05796				Foca	86.899
7	⁷ MP03J1841	-0947138		18:41:14,76	-09:47:13,8	11,8	320,510	52,292	99,99999	99,99999				Len Calcu	lations
8	8 MP03 J1841	-0940016		18:41:25,10	-09:40:01,6	11,9	411,287	273,985	99,99999	99,99999				Table	MPC V
9	9 MP03 J1841	-0946599	×	18:41:14,44	-09:46:59,9	12,0	318,694	58,920	-0,02644	-0,14779				T dbic	
10) MP03J1840	-0940463	_	18:40:58,48	-09:40:46,3	12,1	204,230	260,517	99,99999	99,99999				Numbe	
11	MP03J1841	-0933552	×	18:41:17,38	-09:33:55,2	12,2	360,847	468,389	-0,01076	-0,05906				Name	Melpomene
12	2 MP03 J1841	-0946029	_	18:41:16,21	-09:46:02,9	12,3	334,555	87,992	99,99999	99,99999					
13	8 MP03J1841	-0933503	×	18:41:31,09	-09:33:50,3	12,3	467,177	466,011	-0,01247	-0,01214					
14	MP03J1841	-0939234		18:41:08,88	-09:39:23,4	12,5	286,838	300,124	99,99999	99,99999					
15	5 MP03J1841	-0936507	×	18:41:28,82	-09:36:50,7	12,5	445,142	372,557	0,01499	0,16390					
16	5 MP03 J1841	-0934179	<u> </u>	18:41:24,96	-09:34:17,9	12,5	411,534	453,394	99,99999	99,99999					
17	² MP03J1840	-0938594	×	18:40:52,33	-09:38:59,4	12,6	159,345	318,255	0,03282	-0,11463					
18	8 MP03 J1840	-0934156	×	18:40:45,48	-09:34:15,6	12,6	113,158	469,210	-0,13293	-0,05441					
19	9 MP03 J1840	-0936432	×	18:40:45,62	-09:36:43,2	12,6	110,893	391,955	0,37258	-0,01644					
20	0 MP03 J1841	-0947114	X	18:41:18,75	-09:47:11,4	12,7	351,662	51,411	-0,25297	0,03522					
21	MPU3 J1840	-0942005	×	18:40:59,43	-09:42:00,5	12,7	209,871	220,985	0,00985	-0,08061					
24	MPU3J1841	-0944298	X	18:41:10,71	-09:44:29,8	12,8	293,350	139,055	-0,37127	0,35056				_ (Recompute
2:	3 MPU3 J1841	-0945377	X	18:41:04,03	-09:45:37,7	12,8	240,149	105,692	0,01773	-0,11114		1		·	
Ubje	ect				r	0.00			Observa	tion Codes	1	🔒 Save			
Nam	e Melpomene		M	PC [UUU18	Mag	9,29	SNR 33	8,222	Note 1						
>	< 310,10	13 Y		275,8744					<none></none>	•	-	Load ⊡			
Riał	nt Ascension								Note 2			Print Print			
Mea:	sured 18:4	1:12,01	5.D.	0,196 Calc	18:41:1	2,03	M-C H	0,320	CCD		-	Printer			
Dec	lination				-				Mag Cod	e	0	Text			
Mea	sured 09:	40:07,0	6.D.	0,170 Calc	-09:40:	07,0	M-C	0,023	R - Re	d	•	🍋 мрс			

Na dole strony jest pokazana wyznaczona pozycja asteroidy. W tabeli przedstawiono dane dla gwiazd odniesienia stosowanych, aby znaleźć stałe pole. Liczby w pierwszej kolumnie tabeli odpowiadają numerom z wykresu na stronie pomiarów. Wartości *RARes/DCRes* są różnicą między pozycjami z katalogu, a tymi wyliczonymi z pola i ze stałych, podaną w sekundach łuku. Odchylenia standardowe od tych różnic są pokazane w polach *S.D.*, w dolnej części formularza.

4.1 Okno Zoom

Gdy próbujemy umieścić kursor myszy na obiekcie na zdjęciu, to pomocne może być zobaczenie powiększonego obraz obszaru pod kursorem. Wykorzystujemy do tego funkcję "*Zoom*".

Po otwarciu obrazu, kliknij prawym przyciskiem myszy na niego i wybierz jedną z trzech pozycji z menu podręcznego. Każdy z nich zapewnia inny poziom powiększenia, 200%, 300% lub 400%. Można również wyświetlić formularz naciskając kombinację klawiszy: Ctrl+Shift+2 (200%), Ctrl+Shift+3 (300%) lub Ctrl+Shift+4 (400%).

4.2 Manual Matching

Czasami *Canopus* nie może wykonać *AutoMatch*. Może tak się dziać z kilku powodów. Zazwyczaj *Canopus* nie może poprawnie zinterpretować informacji z nagłówka FITS, więc nie jest w stanie określić przybliżonego środka obrazu lub przybliżonej skali i/lub orientacji do

narysowania wykresu.

Kiedy napotkamy taki problem, można jeszcze samemu dopasować obraz i tak uzyskać stałe pola.

Aby wykonać ręczne dopasowanie *Canopus* wymaga najpierw narysowania mapy nieba, który w przybliżeniu odpowiada skali i orientacji obrazu. Wówczas można zrobić ręcznie to, co Canopus robi automatycznie: wskazać parę gwiazd na mapie, którym odpowiadają te same gwiazdy na obrazie. Wtedy *Canopus* może zrobić resztę.

Jeśli mamy już wczytany obraz możemy przystąpić do dopasowania mapy do obrazu. Należy wybrać z menu głównego *"Image* | *Generate manual chart"*. Zostanie wyświetlony komunikat:

Naciskając <No>, pojawi się formularz generowania mapy:

Charting Information	×
Chart based on Minor Planet Center Number 18	СК ОК ОК
Name Melpomene	X Cancel
RA 18:39:57	
Dec -08:42:25	
Date 2012-05-19	
UT 21:28:19	

Jeśli to możliwe, Canopus wypełnia widoczne pola.

W tym przypadku program był w stanie ustalić, że obraz zawiera 18 Melpomene i odpowiednio ustawić formularz.

Jednak wcale tak być nie musi. Aby zlokalizować mapę nieba należy wybrać z rozwijanego menu okna *Position* i wpisać współrzędne środka obrazu. Kliknij <OK> aby wygenerować

mapę. Ekran powinien wyglądać podobnie do tego:

Należy wybrać jedną z gwiazd na obrazku i klikając na nią prawym przyciskiem myszy wybrać "Set image star | Add Star 1".

Następnie trzeba znaleźć tę gwiazdę na mapie i klikając na nią prawym przyciskiem myszy wybrać "*Set chart star* | *Add Star 1*".

Analogicznie wybierz i zaznacz drugą gwiazdę. Dzięki temu program będzie mógł zlokalizować tzw stałe pola, do którego będzie potem się odnosił przy lokalizacji obiektów.

5. Tworzenie Sesji

Session jest wewnętrznym sposobem programu na organizacje obserwacji. Każda sesja jest zestawem pomiarów tego samego obiektu, w tym samym dniu, za pomocą tego samego filtru i z takimi samymi gwiazdami porównania. Dla wolno poruszających się asteroid, zazwyczaj wystarczy utworzyć jedną sesję dla danej nocy. Chyba, że będziemy obserwować dany obiekt w różnych filtrach. Wówczas dla każdego filtra, należy utworzyć osobną sesję.

Jeśli obserwujemy na tyle szybko poruszającą się asteroidę, że trzeba zmienić pole widzenia raz lub wiele razy w ciągu jednej nocy, a więc zdefiniować nowy zestaw gwiazd porównania dla każdego pola, wtedy dla każdego pola należy utworzyć oddzielną sesję.

Aby otworzyć okno *Photometry Sessions Data* należy wybrać z menu głównego "*Photometry* | *Sessions*", lub wywołać to okno kombinacja klawiszy *Ctrl+Shift+S*:

Phe	otometr	y Sessions Data	1.1			1.1	1000	
Session Data			<u>O</u> bservations	1	Comparison Plots	rison Plots C <u>a</u> talog Check		
	#	Object	Date	*	New	🖉 Sa	ive	
	31	Hebe	2012-03-22 21:32:00		💦 Edit 🛛 🖈 🖓 In	mort X Rev	vert	
	32	Venetia	2012-12-14 20:44:00	-				
	33	Hebe	2012-11-10 03:25:00	_	<u>Delete</u>			
	34	Venetia	2012-11-10 23:00:00		To File			
	35	Venetia	2012-11-10 23:00:00	m á		1		
lÞ	36	Venetia	2012-11-10 23:00:00	-	🗸 ок 🛛 🗶 с	ancel ? H	elp	
Г	Session	Data			Comparisons Data			
	Session 36	Object Venetia	Mid-Date Mid	1-Time 23:00	Delta Comp.	0,000 🔲 Calc D	c	
	Filte	r R 🔻 Mag Band			C1 A	Use 🔽	C1CM 11,768	
					C2 B	Use 🔽	C2CM 12,267	
	relescop	•	✓ F.L. 2400,00		C3 C	Use 🔽	C3CM 12,111	
	Camera		Temp -9 Exp	25	C4 D	Use 🔽	C4CM 13,260	
	Object D	0ata		04-04	C5 E	Use 🔽	C5CM 13,299	
	simag	0,150	E.D. 1,484 RA	04:01			Avg: 12,541	
		Phase 7,23	S.D. 2,444 Dec	+05	Note		CM CI	
	DM -	-0,015 DM + 0,0	015 🥳 🗌 Calc	M/D/P		-3	Transfer	

Aby utworzyć nową sesję należy kliknąć przycisk <New>. W polu *Object* wpisz nazwę planetoidy. Rozwijana lista zawiera dziesięć ostatnio analizowanych obiektów, ale można również wpisać nazwę nowego obiektu.

Bardzo ważne jest, aby używać dokładnie takiej samej nazwy dla danego obiektu na wszystkich sesjach. *Canopus* grupuje sesje według nazwy. Nie ma znaczenia czy napiszemy np. HEBE i Hebe – te sesje będą w tej samej grupie, ale program jest wrażliwy na inne różnice.

Pole *Mid-Data* powinno już być uzupełnione, dane pobrane z nagłówka FITS. Jeśli godzina w nagłówku FITS nie jest w czasie UT należy ją skorygować. Format daty w *Canopusie* jest następujący: rrrrmmdd (rok-zawsze cztery cyfry, miesiąc, dzień), natomiast dla czasu należy używać formatu 24-godzinnego, np.: 13:05, a nie 1:05 PM.

Pole *Mid-Time* wskazuje przybliżony środkowy czas UT, jaki należy wprowadzić. Nie musi być to dokładnie wartość środkowa, wartość w pobliżu jest również wystarczająco dobra. Domyślnie to pole dla moich obserwacji przyjmowało wartość 23:00 UT.

Pola dotyczące teleskopu i kamery można pozostawić puste, pod warunkiem, że dane tych urządzeń były rzetelnie wypełnione w oknie konfiguracji – *Canopus* pobierze dane właśnie z tych ustawień i/lub nagłówka obrazka.

Klikając przycisk <Calc M/D/P>, zostanie wyświetlony formularz, w którym będą mierzone parametry planetoidy.

MPO	Asteroio	Lookup		
	Number 15 16 17 17 18 19 20	Name Eunomia Psyche Thetis Melpomene Fortuna Massalia		Source MPC V Is Asteroid V Sort by Number V G 0,250
S	21 ∢ □ iearch for	Lutetia	+	MPC G: 0,250

Wybierz asteroidę przewijając w dół tabeli lub za pomocą powyższych pól wyszukiwania po prawej stronie (Number, Name) i na dole formularza. Jeśli planetoida będzie podświetlona, kliknij <OK>. To automatycznie wprowadzi dane w pola w tej samej strefie, co przycisk <Calc M/D/P>. Wartości w tych polach są używane do skorygowania zmiany odległości i kąta fazowego, oraz czasu dotarcia światła. Kliknij <Save>, aby zapisać zmiany. Kliknij <OK> aby zamknąć formularz sesji. Ta sesja jest teraz domyślną sesją, w której dane są dodawane lub w których istniejące obserwacje są edytowane.

6. Tworzenie pierwszej krzywej blasku

Aby otworzyć kreatora krzywej blasku wybieramy "*Photometry* | *Lightcurve wizard*", lub używając skrótu klawiszowego Ctrl+Shift+W. Spowoduje to wyświetlenie okna:

Kliknij <Yes>. Spowoduje to wyświetlenie pierwszej strony kreatora:

Lightucurve Photometry Wizard				
This wizard guides you t series of images of the s photometry.	hrough setting up to measure a ame target for lightcurve			
The first step is to open first image of the series b	The first step is to open the first image. This should be the first image of the series by order of date and time.			
When the second image is loaded, numbers are displayed that correspond to the position and order from image 1. Click the box to have black numbers (for inverted images)				
🔲 Black Numbers	🔲 Star Subtraction			
🗶 Cancel	<< Back >> Next			

Kreator ma wiele stron, z których niektóre mają okienka wczytywania obrazów, tekst informacyjny, lub oba. Przechodzi się pomiędzy kolejnymi stronami kreatora używając przycisku "*Next*" i "*Back*".

Kliknij przycisk obok pola wprowadzania i wczytaj pierwsze zdjęcie.

Zaznaczenie pola "*Star Subtraction*" pozwala odjąć jasność gwiazdy, w pobliżu której przemieszcza się planetoida – ta funkcja nazywa się "*StarBGone*".

Klikając <Next> zobaczymy stronę tekstu informacyjnego. Kliknijmy <Next> ponownie, aby przejść do strony, na której można określić gwiazdy porównania na pierwszym zdjęciu.

Lightucurve Photometry Wizard				
lmage #1	X Centroid	Y Centroid		
Star 1	0,0000	0,0000		
Star 2	0,0000	0,0000		
Star 3	0,0000	0,0000		
Star 4	0,0000	0,0000		
Star 5	0,0000	0,0000		
Target	0,0000	0,0000		
Show Path	Clear	Selector		
Target 🖲 Comp O				
🗙 Cancel	<< <u>B</u> ack	>> <u>N</u> ext		

Kliknij <Show Path>. Wyświetli się okno podobne do tego w Sessions do wyboru asteroidy.

Nur	mber	Name	•	Asteroid Table
	13	Egeria		MPCORB _
	14	Irene		Is Asteroid 🛛 🔽
	15	Eunomia		Sort by
	16	Psyche		Number _
	17	Thetis		Search for
	18	Melpomene		1
	19	Fortuna		
	20	Massalia		
	21	Lutetia		
	22	Kalliope		
	23	Thalia		

Odnajdź planetoidę (tu 18 Melpomene) w tabeli i kliknij <OK>.

Na obrazie pojawi się wokół planetoidy małe kółko, oraz kierunek ruchu planetoidy i długość linii podana w czasie jej ruchu.

Zaznacz asteroidę, czyli kliknij na punkt na końcu linii, otoczony małym okręgiem, z dala od etykiety "+12hrs", a następnie kliknij <Target> na oknie kreatora. Wprowadzi to współrzędne (X,Y) obiektu.

Kliknij <Selector> w oknie kreatora. Wyświetli się okno Comp Star Selector (CSS):

Powinniśmy zobaczyć wykres podobny do tego powyżej. Idealnym rozwiązaniem byłoby gdyby nachylenie (*Slope*) wynosiło 1,000 a *S.D* 0,000 mag, lecz nigdy się tak nie zdarza.

Po kliknięciu na dany punkt na wykresie, Canopus automatycznie umieszcza zestaw pomiaru apertur na gwieździe w obrazie, który odpowiada temu punktowi danych i środkowi gwiazdy. Ponadto na pasku stanu u dołu CSS wyświetla informacje na temat gwiazdy.

Jeśli klikniesz na gwiazdę na obrazie, która jest zaznaczona na wykresie, to punkt danych zmieni się na zielony i ponownie zobaczysz informacje o gwieździe na pasku stanu. Jeśli gwiazda nie posiada odpowiednika na wykresie, wszystkie punkty wykresu będą miały fioletowy kolor, a informacje na pasku stanu znikają.

Dobrze jest wybrać gwiazdy, których punkty na wykresie są zbliżone do czarnej ciągłej linii i mają wskaźnik koloru podobny do planetoidy. Wartości gwiazd nie muszą być dokładnie takie same, ale chcemy aby ich kolor indeks nie odbiegał więcej niż 0,2 mag od indeksu koloru obiektu.

Po kliknięciu "*Solar*" na panelu, wykres jest odświeżony i pokazuje tylko gwiazdy z przedziału $0.5 \le B-V \le 0.9$, czyli w przybliżeniu o takim samym kolorze jak większości planetoid, które po prostu odbijają światło słoneczne.

Po kliknięciu "Solar" oraz opcji "Show on Image" na obrazku zaznaczane są wszystkie gwiazdy typu słonecznego:

Istnieje sposób wyłączenia odstających punktów na wykresie, żeby ustalić które gwiazdy są naprawdę blisko linii. W tym celu należy wybrać punkt klikając na niego myszką równocześnie przyciskając klawisz <Ctrl> na odstającym punkcie i potwierdzić *"Yes"* na komunikacie potwierdzenia usunięcia punkt z obliczeń. To automatycznie aktualizuje rozwiązanie.

6.1 "Gwiazda kotwica"

Pierwsza gwiazda porównania (Comp 1) jest tzw *"anchor star"* ("gwiazdą kotwicą") i ma kluczowe znaczenie w wielu funkcjach *Canopusa*. Musi być to starannie dobrana gwiazda. Głównym jej zastosowaniem, poza jej rolą jako jedna z gwiazd porównania do fotometrii różnicowej, jest jako punkt odniesienia dla położenia innych gwiazd porównania oraz obiektu. Wszystkie pozycje są otrzymywane jako odsunięcia od gwiazdy kotwicy. Dobra gwiazda kotwica ma jedną cechę: jest na wszystkich obrazkach, które mają być mierzone.

Jeśli to możliwe, wybierz maksymalnie pięć gwiazd porównania, ale nie mniej niż dwie. Mając więcej gwiazd porównań obniża się szum w wartości średniej i daje pewną elastyczność, jeśli za gwiazdę porównania wybrało się akurat gwiazdę zmienną.

Aby wybrać gwiazdy porównania, kliknij na gwiazdę, jeśli punkt odpowiadający jej na wykresie zmieni kolor na zielony kliknij <Set Comp X> (X to liczba od 1 do 5) w CSS.

Kiedy już wszystkie gwiazdy porównania będą wybrane przejdź do zakładki obok Comps:

Comp Star Selector	State of the State	×
Plot Comps Comp1: 9,839 Co Comp2: 12,325 Co	Comp3: 12,886 Comp5: 13,562 Comp4: 13,221	MPOSC3 - Filter
Comp B V 1 10,891 10,220 2 13,130 12,622 1 3 13,978 13,280 1 4 14,313 13,615 1 5 14,762 13,992 1 B Avg V Avg R 13,415 12,746 1	R I g' r' 9,839 9,473 99,990 99,990 12,325 12,028 99,990 99,990 12,325 12,509 99,990 13,578 13,221 12,844 99,990 14,134 13,562 13,157 99,990 99,990 R Avg I Avg g' Avg r' Avg 12,367 12,002 99,999 13,856	Plot Comps Set Comp 1 Set Comp 2
✓ III Transfer to Active Session – Avg to DeltaComp Avg to DeltaComp ✓ Set Comp Mags ✓ Text to NOTES ✓	C B-V Transfer Save to Text	Set Comp 3 Set Comp 4 Set Comp 5
Solar	Show on image 🔽 <u>⊘</u> 516 CM: 13,562 IM: -5,791 B-V: 0,770 V-R	: 0,430

Jeśli używasz metody *Derived*, to nie zaznaczaj pola "Avg to DeltaComp". Jeśli natomiast używaliśmy metody *Instrumental*, wtedy można zaznaczyć to pole. Zaznacz pole wyboru "*Set Comp Mags*", oraz pole "*Text to NOTES*".

Kliknij <Transfer>. Wyświetli się komunikat potwierdzający, że dane zostały przeniesione lub, jeśli nie, okno problemu. Dane dotyczące gwiazd porównania zostały przekierowane do okna sesji.

Kliknij <Save to Text> na tej stronie CSS. Zawartość pola zapisze się do pliku tekstowego w domyślnym katalogu z którego zostały pobrane dane.

Jest to nieco zbędne do przenoszenia tekstu do pola Uwagi sesji, ale daje drugą kopię w oddzielnym pliku, który możesz wysłać do innego obserwatora.

Po zamknięciu CSS, kreator zawiera współrzędne poszczególnych gwiazd:

Lightucurve Photometry Wizard				
lmage #1	X Centroid	Y Centroid		
Star 1	326,8856	375,1068		
Star 2	141,6776	43,9041		
Star 3	188,6579	224,2197		
Star 4	443,9031	249,5954		
Star 5	106,5494	291,6934		
Target	201,5460	241,7978		
Show Path	Clear	Selector		
Target 💿 Comp C				
🗶 Cancel	<< <u>B</u> ack	>> <u>N</u> ext		

Przejdź do następnej strony kreatora klikając <Next>

Lightucurve Photometry Wizard					
Now open image #2.					
This image should be the last in the series of images as ordered by date and time					
Cancel << <u>B</u> ack >> <u>Next</u>					

Kliknij przycisk obok pola wprowadzania i wczytaj drugie zdjęcie.

Drugi obraz w kreatorze jest używany do obliczenia szybkości ruchu planetoidy w ruchu postępowym i szybkości rotacji. Dzięki niemu *Canopus* może obliczyć pozycję obiektu i innych gwiazd porównania, w odniesieniu do miejsca położenia gwiazdy kotwicy dla każdego obrazu.

Biorąc pod uwagę te względy, drugi obraz powinien spełniać kryteria:

- musi zawierać gwiazdę kotwicę, która z kolei nie powinien być zbyt blisko krawędzi,
- powinien zawierać wszystkie wybrane gwiazdy porównania,
- powinien być z końca sesji, w celu zwiększenia dokładności przewidywania prędkości przemieszczania się planetoidy na niebie.

Po wczytaniu drugiego obrazu, oraz przejścia kolejnych dwóch stron kreatora pojawiają się na wczytanym zdjęciu oznaczenia liczby oraz litera "T"

Numery 2-5 oraz "T" znajdują się w odniesieniu do liczby 1, czyli gwiazdy kotwicy (*anchor*) na podstawie przesunięć współrzędnych X i Y mierzone w pierwszym obrazie.

Zazwyczaj etykiety nie będzie dokładnie obok odpowiednich gwiazd i planetoidy.

Możemy zmienić położenie całego zestawu oznaczeń, przesuwając kursor myszy nad gwiazdę kotwicę (*Comp 1*), a następnie naciskając kombinację *Ctrl+Click*, co zmienia położenie wszystkich etykiet.

Należy sprawdzić, czy gwiazdy zostały prawidłowo teraz zidentyfikowane, tj. czy wszystkie etykiety, z wyjątkiem "T" - etykiety planetoidy, znajdują się obok odpowiednich gwiazd porównania. Etykieta "T" nie znajduje się obok właściwego obiektu, ponieważ planetoida się przemieściła.

Kiedy już etykiety gwiazd znajdują się we właściwych położeniach, należy w kreatorze kliknąć na przycisk <Star 1> (upewnij się, że jesteś na stronie "Image # 2"), aby wprowadzić współrzędne gwiazd porównania (X,Y) do pamięci.

Lightucurve Photometry Wizard				
Image #2	X Centroid 264,9700	Y Centroid 378,9629		
	80,4981	44,8038		
	130,1499	224,6383		
	385,0464	255,7437		
	46,4405	291,8923		
Target	0,0000	0,0000		
Show Path	Clear			
Target 📀 Comp	C .			
X Cancel	<< <u>B</u> ack	>> <u>N</u> ext		

Kliknij <Show Path>, jak na obrazku pierwszym, wydaje się, że linia pokazuje drogę asteroidy, ale tym razem nie jest ona zaznaczona małym okręgiem w punkcie wzdłuż drogi, gdzie Canopus przewidywał położenie planetoidy.

Kliknij na planetoidę, aby sczytać jej położenie pozycji docelowej, a następnie kliknij <Target> w kreatorze. Wartości (X,Y) zostaną wpisane w kreatorze.

Przejdź do kolejnej strony kreatora. Wyświetli się ostatnia strona kreatora.

Lightucurve Photometry Wizard			
If both images have been measured, you're now set for photometry.			
Use the Save Comps button to save the first image as a PNG/BMP with the comp stars indicated with their numbers			
The next step is to close this wizard by clicking the Finish button. This automatically opens the Canopus Image List (same as clicking Image I Set Image List)			
Select one or more images in the Image List to be measured using the settings from the wizard.			
🔽 Automatically display image list			
Save Comps			
Cancel << Back Finish			

Kliknij <Save Comps>, to zapisuje kopię obrazu 1 z etykietami. Domyślnym katalogiem jest katalog taki sam jak dla obrazu 1.

Kliknij <Finish>, wyświetli się okno dialogowe Windows.

Zaznacz wszystkie zdjęcia z używanej sesji (zazwyczaj z całej nocy). Po zaakceptowaniu wyboru, po chwili, *Canopus* wyświetla listę obrazów. Opóźnienie spowodowane jest tym, że program sortuje wybrane obrazy wg rosnącej daty/godziny pobranej z nagłówka każdego zdjęcia.

6.2 Praca z Canopus Image List

Powyższe okno przedstawia listę obrazów przygotowaną do analizy. Opcje "*Comp*" i "*Target*" odnoszą się do określają zestaw apertur, które będą stosowane po kliknięciu na obrazie podczas wstrzymania procesu przetwarzania danych. W większości przypadków można użyć "*Target*", ponieważ będziemy korygować położenie apertur planetoidy, jeśli zaczynie "uciekać" od obiektu.

Jeśli jest zaznaczona opcja "Beep ON", Canopus wygeneruje krótki sygnał dźwiękowy po

każdym zmierzonym zdjęciu. Może to być przydatne, np. w momencie, gdy analiza zdjęć jest robiona "w tle", a my zajmujemy się czymś innymi, ale również irytujące. To okienko można w dowolnym momencie zaznaczyć lub odznaczyć.

Warto zauważyć, że pełna automatyzacja oprogramowania nigdy nie była celem *Canopusa.* Dobrze jest, aby przejrzeć każdy plik zanim zostanie zmierzony, a jeśli nie spełnia naszych założeń (np. pod względem jakości obrazu) – odrzucić go. Pełne "zaufanie" komputerowi może doprowadzić do dopuszczenia wielu złych pomiarów. Patrząc na proces pomiarowy, można mieć w pewnym stopniu kontrolę, aby zmniejszyć liczbę znacznie odstających punktów. Otrzymana krzywa blasku będzie obarczona mniejszą niepewnością, a wynik będzie dokładniejszy.

Ja selekcji zdjęć dokonywałam przed procesem analizy w Canopusie.

6.3 Full Manual – bez i z AutoMatch

W tym trybie, po dwukrotnym kliknięciu na pierwszy obrazek na liście, obrazek jest ładowany i *Canopus* umieszcza apertury pomiarowe w miejscach, w których uzna, że powinny się znaleźć gwiazdy porównania i planetoida. Jeśli miejsca te są dobre, kliknij <Accept> (lub naciśnij *Enter*). *Canopus* rejestruje dane, a następnie ładuje kolejny obraz. Jednak klikanie <Accept> lub naciskanie *Enter* może być dość uciążliwe w przypadku dużej liczby obrazków. Ponadto, jeśli *Canopus* nie może znaleźć gwiazdy zakotwiczenia w granicach \pm 5 pikseli od oczekiwanej pozycji, wyświetla komunikat o błędzie i nie mierzy zdjęcia. W takim wypadku należy albo zmienić położenie apertur pomiarowych, albo przejść do następnego obrazu.

Jeśli zaznaczymy "*AutoMatch*", proces analizy danych jest o wiele wolniejszy, ale z wyjątkiem rzadkich przypadków, *Canopus* automatycznie wyszukuje gwiazdę kotwicę i nie trzeba zmieniać położenie apertur pomiarowych. Trzeba jedynie klikać <Accept> (lub naciskać *Enter*), aby załadować następny obraz.

6.4 Semi - Auto - z i bez AutoMatch

Proces wygląda analogicznie jak ten opisany powyżej, z tym, że kliknięcia <Auto> na liście obrazów, sprawia, że program korzysta z prostego przetwarzania automatycznego i sam *"Delay"*. Nawet wartość 0 ma niewielkie opóźnienie, w czasie którego system Windows prawidłowo przetwarza wiadomości.

Nie używanie AutoMatch jest zalecane w większości przypadków. Jeśli np. musisz zmienić

położenie apertur dla prawie każdego obrazu, proces pomiarowy zajmie znacznie mniej czasu jeśli nie zastosujemy *AutoMatch*.

Pole *Auto TO* zmienia domyślny czas oczekiwania w sekundach dozwolony by wyodrębnić gwiazdy z obrazu i zrobić *AutoMatch*. Działa to w połączeniu z "*Configuration* | *Charting*" i opcją "*Max Skala Diff*".

6.5 Full Auto – wymuszenie AutoMatch

Jest to tryb, w którym po uruchomieniu nie wyświetlają się komunikaty o błędach, ani proces analizy nie jest wstrzymywany. Jeśli obraz nie jest dobry z jakiegokolwiek powodu, informacja o błędzie jest przechowywana i *Canopus* przechodzi do następnego obrazu automatycznie. Wszystkie błędy są wyświetlane po analizie ostatniego obrazka.

AutoMatch "zmuszony jest" znaleźć gwiazdę kotwicę i mierzy położenia gwiazd porównania oraz planetoidy, nawet gdy przez pole widzenia przechodziły chmury, lub pojawiłby się obcy statek kosmiczny.

Zaznacz (ale nie klikaj podwójnie) pierwszy plik na liście. Upewnij się, że pole *AutoMatch* nie jest zaznaczone. Kliknij <Auto>. Wyświetli to formularz, który pozwala na wybór trybu automatycznego przetwarzania.

Wybierz "*Simple (AutoMatch optional)*", a następnie kliknij przycisk <OK>. Zauważ, że przycisk "*Auto*" zmienił się na "*Abort*". Możesz przerwać proces analizy naciskając właśnie ten przycisk i potwierdzając <Yes>.

Podczas korzystania z tej opcji, proces przetwarzania danych będzie prawdopodobnie wielokrotnie przerywany komunikatami o błędach, np.:

Taki komunikat pojawia się wtedy, gdy program nie może znaleźć środka gwiazd i obiektu. Zazwyczaj na obrazie gwiazdy i planetoida nie są symetryczne ale mają rozciągły kształt.

Innym przykładem pojawiających się błędów może być:

\bigotimes	Comp1 aperture placement is not correct OR One or more comp stars are saturated
	ОК

Apertura wokół gwiazdy kotwicy jest nieprawidłowa (prawdopodobnie zdjęcie jest zbyt poruszone), lub któraś z pozostałych gwiazd porównania jest prześwietlona.

Kiedy natomiast pojawi się taki komunikat:

oznacza to najprawdopodobniej, że któraś z gwiazd "uciekła" poza ramkę zdjęcia.

Jeśli natomiast zaznaczymy "Full Auto (AutoMatching forced)"

Auto	Measure Method	ł	×
Г	AutoMeasure Meth	nod	
1	C Simple (AutoMa	tch optic	inal)
	Full Auto (Auto)	/latching	forced)
		🗙 Ca	incel

Canopus przechodzi przez cała listę pomiędzy obrazkami automatycznie. Błędy nie są wyświetlane po każdym obrazku, lecz po dokonaniu całej analizy pojawia się lista błędów.

Auto Processing Errors	
Centroid of Star #1 not found. Possible causes: 1. It moved too far2. It is saturated	due to ove 🔺
Centroid of Star #1 not found. Possible causes: 1. It moved too far2. It is saturated	due to ove
Centroid of Star #1 not found. Possible causes: 1. It moved too far2. It is saturated	due to ove
Centroid of Star #1 not found. Possible causes: 1. It moved too far2. It is saturated	d due to ove
Centroid of Star #1 not found. Possible causes: 1. It moved too far2. It is saturated	d due to ove
Centroid of Star #1 not found. Possible causes: 1. It moved too far2. It is saturated	due to ove
Centroid of Star #1 not found. Possible causes: 1. It moved too far2. It is saturated	due to ove
Centroid of Star #1 not found. Possible causes: 1. It moved too far2. It is saturated	due to ove
Centroid of Star #1 not found. Possible causes: 1. It moved too far2. It is saturated	d due to ove
Centroid of Star #1 not found. Possible causes: 1. It moved too far2. It is saturated	due to ove
Centroid of Star #1 not found. Possible causes: 1. It moved too far2. It is saturated	d due to ove
Centroid of Star #1 not found. Possible causes: 1. It moved too far2. It is saturated	due to ove
Centroid of Star #1 not found. Possible causes: 1. It moved too far2. It is saturated	due to ove
Centroid of Star #1 not found. Possible causes: 1. It moved too far2. It is saturated	due to ove
Centroid of Star #1 not found. Possible causes: 1. It moved too far2. It is saturated	due to ove
Centroid of Star #1 not found. Possible causes: 1. It moved too far2. It is saturated	due to ove
Centroid of Star #1 not found. Possible causes: 1. It moved too far2. It is saturated	due to ove
Cannot find target centroid: melpomene.00000299	
Centroid of Star #1 not found. Possible causes: 1. It moved too far2. It is saturated	due to ove
Lentroid of Star #1 not found. Possible causes: 1. It moved too far2. It is saturated	due to ove
Centroid of Star #1 not found. Possible causes: 1. It moved too far2. It is saturated	due to ove
Lentroid of Star #1 not found. Possible causes: 1. It moved too far2. It is saturated	due to ove
Lentroid of Star #1 not found. Possible causes: 1. It moved too far2. It is saturated	due to ove
Lentroid of Star #1 not found. Possible causes: 1. It moved too far2. It is saturated	due to ove
Lentroid of Star #1 not found. Possible causes: 1. It moved too far2. It is saturated	due to ove
Controld of Star #1 not round. Possible causes: 1. It moved too far2. It is saturated	due to ove
Controld of Star #1 not round. Possible causes: 1. It moved too far2. It is saturated Controld of Class #1 not found. Possible causes: 1. It moved too far2. It is saturated	a due to ove
Lentroid or Star #1 not round. Possible Causes: 1. It moved too rar2. It is saturated	
	-
<	P.
Save Read only	Close

7 Tworzenie krzywej blasku

Po skończonej analizie danych przejdźmy do widoku "*Lightcurve Analysis*" wybierając z menu głównego "*Pages* | *Lightcurve Analysis*" lub używając kombinacji klawiszy *Ctrl+4*. W głównym oknie pod menu głównym widzimy pasek:

Orders 4 Min. 2,0000000 Size 0,10000000	Raw Use Xirm	•	Floating Range 📀
Steps 100 Bin 1 Max. Diff. 10	C Drivers C Period (auto) Period (auto) B Mag ♥	Period: 000.00000 +0.00000	Fixed Range C Range 0,60

Na pasku widzimy okienka, oto krótki opis każdego z nich:

Orders - liczba okresów harmonicznych w analizie Fouriera

Min - minimalny poszukiwany okres

Size - wielkość kroków w poszukiwaniu. Są to godziny lub dni, w zależności od ustawienia na karcie *Konfiguracja fotometrii*.

Steps - ilość kroków.

Bin – liczba sąsiadujących punktów pomiarowych uśrednionych w jednym punkcie na wykresie.

Max Diff - maksymalna różnica między dwoma punktami sąsiednimi.

Period:

• **Period(reg)** - krok przyrostu arytmetycznego, *Orders:* okres jest stały, ale liczba *Orders* wynosi od *Min* do *Min* + *Steps. Canopus* może przyjąć największą wartość *Orders* = 15.

 Period(auto) - wielkość kroku rośnie geometrycznie w stosunku do okresu początkowego i początkowej wielkości kroku. To pomaga uniknąć pominięcia w wyszukiwaniu prawidłowego rozwiązania.

7.1 Reduced Magnitudes

Dla *Canopusa* wielkość *Reduced Magnitudes* to jasności, które zostały poprawione o odległość przy stałym kącie fazowym, tzn. jest to wartość, jaką miałaby planetoida, gdyby się znajdowała w odległości 1 AU od Słońca i 1 AU od Ziemi, dla danego stałego kąta fazowego. Przypadek taki nie jest fizyczny, ale można zastosować korektę:

$$-5 \cdot \log(rR)$$
,

gdzie r to odległość Ziemia – asteroida, a R jest odległością Słońce – asteroida.

Powstałe wielkości mogą się znacznie różnić od obserwowanej jasności, ale są bezpośrednio porównywalne do siebie pod względem usuwania skutków zmiany odległości.

Jeśli nie chcemy korzystać z *Reduced Magnitudes*, *Canopus* nadal stosuje korektę odległości do wszystkich sesji, ale punkt odniesienia to odległości w czasie pierwszej sesji.

Kliknij <Find>, spowoduje to wyświetlenie formularza Select Sessions:

Upewnij się, że przycisk "*All"* jest zaznaczony. W przeciwnym razie, można zobaczyć tylko te sesje gdzie filtr jest taki sam jak ten zapisany w aktualnej sesji.

Wybierz (zaznacz) tylko te sesje, które chcesz analizować. Aby zaznaczyć więcej niż jedną sesję należy kliknąć *Shift+Click* i/lub *Ctrl+Click*. Po wybraniu sesji, na których pracujesz, kliknij <OK>. Po chwili zobaczysz:

7.2 Kąt fazowy α

Należy zauważyć, że oś Y jest opisana jako "Reduced Magnitudes alfa (16,7 °)".

Kąt fazowy to kąt pomiędzy Słońcem, planetoidą, a Ziemią, został oznaczony α.

Należy pamiętać, że wszystkie dane muszą być skorygowane, aby usunąć skutki nie tylko na zmianę odległości, ale również zmianę kąta fazowego.

Korekty są obliczane przy użyciu wartości G (wartość współczynnika nachylenia). Kąt fazowy dla pierwszej sesji jest "punktem zerowym" dla wszystkich innych poprawek - wszystkie dane są skorygowane do tego kąta fazowego. Korekcja do 0 ° wymaga dokładnej znajomości parametru G, który często nie jest znany.

Jeżeli kąt fazowy w pierwszej sesji (zwykle najwcześniej według daty) nie jest obliczony, zastępuje go wartości w nawiasach.

7.3 Sprawdzanie gwiazd porównania

Natychmiast po dokonaniu pomiaru obrazów, należy sprawdzić, czy żadna z wybranych gwiazd porównań nie jest zmienna.

Kliknij <Notepad> (ikona notatnika) nie daleko prawego górnego rogu *Canopusa,* w głównym pasie postaci, zaznaczonym czerwoną pętlą:

MPO Canopus - Research Level Astrometry and Photo	ometry (cge)		
File Image Photometry Utilities Pages Help P	hotoRed		
📶 🜌 🛱 🏢 🖾 🚟 🏙 😂 💟 🖻 📥 🛉 -	Apertures 13/13/2/5	Refs: 00 Off	fset: 00.000 SD: 0.000 Sess: 37
Orders 4 Min. 2,0000000 Size 0,10000000	Raw V Use Xfrm		Floating Range 📀
Steps 100 Bin 1 Max. Diff. 10	C Drders C Period (auto) R Mag I∕ Č Št Find	Period: 000.00000 +0.00000	Fixed Range C Range 0,60

Wyświetli się okno sesji tworzyć w trybie edycji na bieżącej domyślnej sesji .

Pł	Photometry Sessions Data								
<u>S</u> ession Data		ession Data	Observations			Comparison Plots		C <u>a</u> talog Check	
Γ	#	Object	Date	*	臣	New		🗸 Sa	ive
	32	Venetia	2012-12-14 20:44:00		12	Edit		Y Rev	/ert
	33	Hebe	2012-11-10 03:25:00		1. <u>27</u>	Ear	+ import		
	34	Venetia	2012-11-10 23:00:00		- 23	Delete			
	35	Venetia	2012-11-10 23:00:00			To File			
	36	Venetia	2012-11-10 23:00:00			In The			
ŀ	(37	Melpomene	2012-05-19 23:00:00	-		2 ок	🕺 Cancel	<u>?</u> ±	elp
Session Data Comparisons Data									
	Session 37	Object Melpomene	Mid-Date Mix 2012-05-19	1-Tim 23:0	e 0	Delta Co	omp. 0,000	Calc D	c
	Filte	r R 💌 Mag Band R	- 6			C1 1839	4448 -0846389	Use 🔽	C1CM 13,189
	Telescop	•	▼ EL 2400.00	1		C2 1839	5450 -0839355	Use 🔽	C2CM 13,189
	releacop	•			_	C3 1840	0050 -0844470	Use 🔽	C3CM 13,001
l	Camera		Temp -20 Exp	1	0	C4 1840	0300 -0839456	Use 🔽	C4CM 13,189
	- Object L				_	C5 1839	3806 -0848308	Use 🔽	C5CM 13,189
	Est mag	10,17 G 0,250	E.D. 1,566 RA	18:4		1			Avg: 13,151
		Phase 16,68	S.D. 2,407 Dec	-0	8		Notes		CM CI
	DM -	-0,025 DM + 0,025	Calc	M/D/	P		10103		Transfer

Pamiętamy, że przed analizą danych obok nazwy C1-C5 były litery od "A" do "E". Obecnie w tych miejscach są podane współrzędne rektascencji i deklinacji (bez jednostek). W ten sposób można znaleźć te gwiazdy na każdym obrazie.

Na karcie Comparison Data kliknij <Calc DC>. Może pojawić się komunikat :

Kliknij <No>. To powoduje, że *Canopus* przeliczy wartości gwiazd porównania, jednak wartość w polu D*elta Comp* się nie zmiena.

Kliknij na zakładkę "Comparison Plots"

Kliknij na "Data | Raw", a następnie przycisk opcji po prawej stronie formularza " Comp | 1":

Kliknij na innych przyciski Comp, aby zobaczyć surowe dane dla innych gwiazd porównania.

Szukamy podobnego trendu wśród wszystkich gwiazd porównań. Jeśli wszystkie mają podobny rozrzut i kształt chmury punktów, to wszystko jest dobrze.

Można potwierdzić jakość danych gwiazd porównania dodatkowo klikając "Data | Avg". Wykres nieco się zmieni (w tym przypadku):

Teraz widzimy, że dane układają się wzdłuż prawie płaskiej, poziomej linii.

Program wykreślił różnicę między instrumentalną wielkością wybranej gwiazdy porównania i średnią wielkością instrumentalną pozostałych gwiazd porównań.

Nad wykresem, zobaczysz "SD: 0,029" (w tym przykładzie). To odchylenie standardowe, oparte o średnią wszystkich danych punktów.

Jeśli wykres "Avg" nie jest linią płaską, ale na przykład przyjmuje kształt sinusoidalny, użyliśmy gwiazdę zmienną jako gwiazdę porównania! W takim przypadku należy:

- Wróć do karty danej sesji i odznacz pole "*Use"* obok gwiazdy porównania, która jest zmienna,
- kliknąć <Calc DC> by przeliczyć wartości,
- kliknąć <No> do resetowania *DeltaComp* wartość.

Nawet jeśli wszystkie wykresy gwiazd porównania układają się stosunkowo wzdłuż płaskiej linii, to może być jeden lub więcej punktów danych, które są znacznie powyżej lub poniżej linii. Te obserwacje odstające mogą być spowodowane wieloma rzeczami, np. trafieniem promieniowania kosmicznego, gorącymi lub zimnymi pikselami itp.

Tak odstające znacząco dane powinny być usunięte. Można wyeliminować poszczególne punkty danych (obrazów) z obliczeń:

- <Ctrl+Click> na punkcie danych na wykresie porównania gwiazdy, wyświetli się komunikat potwierdzenia,
- kliknij <Yes>
- w razie potrzeby powtórzyć, sprawdzając każdy pomiar "*Avg*" indywidualnie dla każdego porównania.

Każdy usunięty punkt, jest usuwany również z obliczeń oraz danych gwiazd porównania i wykres jest odświeżane. Obejmuje to odchylenie standardowe wyświetlane w górnej części okna.

Punkty danych nie są usuwane z tabeli danych, lecz po prostu wyłączone z używania. Można przywrócić punkty danych (lub wyłączyć je), przechodząc do zakładki "*Observations*" i albo zaznaczając lub odznaczając pole wyboru "*Use*" dla danej obserwacji .

Gdy jesteś zadowolony z danych, powrócić do zakładki "Session Data" i kliknij «Save», a

następnie kliknij przycisk <OK>.

Kliknij <Find> aby wyświetlić poprawiony wykres.

7.4 Wyłączanie odstających punktów danych z analizy

Tak jak mogliśmy wykluczyć dane z wykresu gwiazd porównania w sesji, tu można wykluczyć jeden lub więcej punktów danych, klikając na krzywą:

- <Ctrl+Click> na danych odstających punkt, wyświetla się komunikat potwierdzenia,
- kliknij <Yes> aby wykluczyć punkt. Okres i nowa krzywa są automatycznie przeliczane.

8 AutoMatch – dane z drugiej nocy

Mierzenie drugiej noc jest niemal identycznych do tego opisanego powyżej. Postępujemy analogicznie, aż do momentu, gdy *Canopus* skończy analizować dane z drugiej (kolejnej) nocy.

Przejdźmy do okna "Lightcurve Analysis" wybierając z menu głównego "Pages | Lightcurve Analysis" lub używając kombinacji klawiszy Ctrl+4.

Kliknij <Find> ponownie, tym razem wybierając tę sesję i stworzoną drugą sesję.

8.1 Wyzwania w analizowaniu okresu

Analiza Fouriera może znaleźć rozwiązanie z minimalnym błędem RMS (pierwiastek ze średniej z kwadratów różnic) pomiędzy modelowaną krzywą i rzeczywistymi danymi. Czasami

wystarczy usunąć jeden punkt ze zbioru danych, aby znaleźć zupełnie inny okres. To sprawia, że analiza okresu jest wyzwaniem.

8.2 Podstawowa analiza Okresu

Canopus używa do analizy okresu metody FALC (Fourier Analysis for Lightcurves), algorytmu opracowanego przez Alana Harrisa, przeznaczonej do analizy okresu asteroid. Petr Pravec dokonał modyfikacji, dzięki której możliwa jest analiza okresów złożonych (dla planetoid podwójnych lub rotujących równocześnie w okół więcej niż jednej osi).

8.3 Analiza

W pasku zmieniamy opcje i zaznaczamy *Period(auto)*, również zmieniamy wartość *Bin* aby zwiększyć czytelność wykresu.

Krzywa wygląda podobnie jak z poprzednimi ustawieniami, ale zwróćmy uwagę na okno pojawiające się przy generowaniu wykresu:

Przedstawione okno to "Period Spectrum". Ma dwie zakładki. Pierwsza dotyczy wyników wyszukiwania periodyczności. Na osi X jest okres (godziny lub dni), natomiast oś Y zawiera błąd RMS (w jednostkach 0,01 mag).

Niższy błąd RMS wskazuje bardziej prawdopodobne rozwiązanie okresu periodyczności, z pewnymi zastrzeżeniami. Przykładowo można zauważyć, ile okresów mają niskie wartości RMS, które są bardzo podobne. Każdy z tych może być prawdziwy, a program może bardzo łatwo dobrać niewłaściwy.

Druga zakładka wyświetla dane w tabeli i pokazuje trzy wartości błędów:

- **PE (Probable Error):** tzn. przewidywany błąd, który wynika bezpośrednio z analizy Fouriera. Często jest "zbyt optymistyczny",
- 3-sig Error: to jest błąd 3-sigma, czyli 3 razy w/w prawdopodobny błąd,
- 2% Error: to jest błąd, który spowoduje, że ostatni punkt danych w zestawie (według daty) będzie przesunięty o 2% (lub ~ 7 ° obrotu).

Trudno jest powiedzieć, który z błędów powinien być zawarty w ostatecznej analizie. Trzeba użyć zdrowego rozsądku i wziąć pod uwagę ilości danych, całkowity zakres czasu obserwacji i dopasowanie danych do krzywej Fouriera.

Kiedy mamy przeanalizowane dane z wszystkich nocy możemy stworzyć wykres zfazowany. W tym wypadku ustawiliśmy następujące wartości na pasku:

Orders 4 Min. 11,5000000 Size 0,00100000	Period (reg) Raw Use Xfrm Use Xfrm	•	Floating Range @
Steps 90 Bin 5 Max. Diff. 0	C Orders C Period (auto) B Mag ♥ ⑦ Find ▼	Period: 11,5760 +0,00000	Range 0,60

Klikając <Find> wybieramy wszystkie sesje i potwierdzamy <OK>. Dostajemy poniższy wykres:

Zaznacz pole *"Fourier"*, to pole nie jest aktywne gdy mamy zaznaczone pole *"Raw"*. Klikamy </br/>Find> i oto mamy rezultat:

Gratulacje! Oto nasza krzywa blasku.

Jeśli chcemy trochę poeksperymentować, można spróbować zmienić wartość *Orders*. Zobaczymy, że np.: dla wartości 8 prawdopodobnie dopasowanie do krzywej Fouriera będzie nieco lepsze.