Observing competition - planetarium round

Solutions and points

Note: For questions requiring giving a position, correct to 1° gets full marks (usually **1 point**), correct to 2° gets half marks (usually **0.5 point**).

1.	Earth	[total 25 p.]
	A) On the map of the sky, mark and label the nova and the Moon and draw the	shape and
	position of the comet.	[2+1+3=6]

B) In the table below, circle only those objects which are above the astronomical horizon. [+0.5 for each correct, -1 for each incorrect]

M20 – Triffid Nebula	o Cet – Mira	δ CMa – Wezen		
α Cyg – Deneb	M57 – Ring Nebula	β Per – Algol		
δ Cep – Alrediph	α Boo – Arcturus	M44 – Praesepe (Beehive Cluster)		

C)	When the coordinate	grid is visi	ble, 1	mark (on the	map the	e northern	part of the	local	
	meridian and the ecli	ptic north p	oole.						[3 + 2]	= 5]

D)	For the	displayed	sky,	give the	e :
----	---------	-----------	------	----------	-----

geographical latitude of the observer :
$$\varphi = \dots,$$
 [1]

Local Sidereal Time :
$$\theta = \dots$$
 [2]

time of year, by circling the calendar month:

E) Give the names of the objects, whose approximate horizontal coordinates are:

azimuth
$$A_2 = 278$$
° and altitude $h_2 = 20$ °: [1]

F) Give the horizontal coordinates (azimuth, altitude) of:

Syrius (
$$\alpha$$
 CMa): $A_3 = \dots$; $h_3 = \dots$ [0.5 + 0.5]

The Andromeda Galaxy (M 31):
$$A_4 = \dots$$
; $h_4 = \dots$ [0.5 + 0.5]

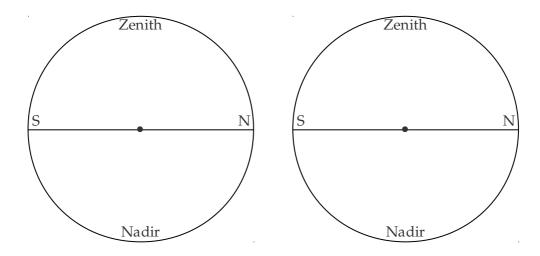
G) Give the equatorial coordinates of the star marked on the sky with a red arrow:

$$\alpha = \ldots$$
; $\delta = \ldots$ [1 + 1]

2. Mars [total 25 p.]

- H) Give the areographic (Martian) latitude of the observer : $\varphi = 23$ degrees [2]
- I) Give the altitudes of upper h_u and lower h_l culmination of :

Pollux (
$$\beta$$
 Gem): $h_u = \dots$; $h_l = \dots$ (calculated) [1+2]

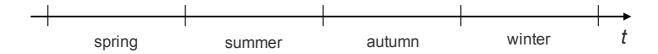

Deneb (
$$\alpha$$
 Cyg) $h_u = \dots$; $h_l = \dots$, [1+1]

J) Give the areocentric (Martian) right ascension and declination of :

Regulus (
$$\alpha$$
 Leo) $\delta = \dots$ [2]

Toliman (
$$\alpha$$
 Cen) $\delta = \dots$ [2]

K) Sketch diagrams to illustrate your working in questions (I) and (J) above : [2+2]


- L) On the map of the sky, mark (with a cross) and label ("M") the Martian North Pole [2].
- M) Give the azimuth of the direction in which the observer moved away from the Martian base :

$$A = 330-180 = 150$$
 degrees. [2]

- N) Estimate the location of the base on Mars, and circle the appropriate description :
 - 7 11 1
 - a. near the Equator b. near the northern Tropic circle [3]
 - c. near the northern Arctic circle d. near the North Pole
- O) The time axis below shows the Martian year and the seasons in the northern hemisphere.

 Mark the date represented by the planetarium display on the axis.

 [3]

