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J. Vošmera Cosmology and Relativity for IOAA
3rd IWAA, Zánka, Hungary September 5, 2018 1

/ 33



Plan for today

1 Relativity

2 Cosmology

3 Problems
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Basic principles and terminology

Time and space on equal footing: spacetime

Special relativity =⇒ physics in flat spacetimes
General relativity =⇒ physics in curved spacetimes

Observer S in spacetime specified by its reference frame t, x , y , z

No preferred observers. Speed of light same in all inertial reference frames.

A point in spacetime [t, x , y , z] called an event

Time perceived by objects moving in frame S: proper time τ

As [t, x , y , z] of moving object change with τ , it traces out a worldline
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Galileo transformation

Different observer (reference frame) S′ moving w.r.t. S with v in the x direction.

Axes of S′ labelled by t′, x ′, y ′, z ′. Say S′ boosted from S.

How are t′, x ′, y ′, z ′ and t, x , y , z related?

Up to 1905: Galileo transformation

t′ = t (1a)

x ′ = x + vt (1b)

y ′ = y (1c)

z ′ = z (1d)

Velocity u with components ux , uy , uz in S and u′x , u
′
y , u
′
z in S′ has

u′x = ux + v (2a)

u′y = uy (2b)

u′z = uz (2c)

In particular

c ′ = c + v (3)
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Lorentz transformation

In 1887 (Michelson & Morley): c = c ′ =⇒ Galileo wrong!

Requiring

1 c ′
!

= c

2 inverse boost = boost by −v
gives Lorentz transformation

ct′ = γ(ct +
v

c
x)

x ′ = γ(x +
v

c
ct)

(4)

(5)

where

γ =

(
1− v 2

c2

)−1/2

(6)

We then have

u′x =
∆x ′

∆t′
=

∆x
∆t

+ v

1 + v
c2

∆x
∆t

=
ux + v

1 + ux v
c2

(7)

which indeed gives c ′ = c
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Proper time, time dilation

(∆t,∆x ,∆y ,∆z) a segment on a world line in S.

Denote

∆τ 2 = ∆t2 − (∆x/c)2 − (∆y/c)2 − (∆z/c)2 (8)

Rest frame S0: ∆x0 = ∆y0 = ∆z0 = 0 =⇒ ∆τ0 = ∆t0 Boost by v to any S′

∆τ ′2 =
γ2

c2
(c∆t +

v

c
∆x)2 +

γ2

c2
(∆x + v∆t)2 +

1

c2
∆y 2 +

1

c2
∆z2 = . . . = ∆τ 2 . (9)

=⇒ ∆τ is Lorentz invariant

=⇒ In any S: ∆τ = ∆t0 = time interval as perceived in S0 =⇒ ∆τ = proper time!

∆τ = ∆t

√
1− ∆x/∆t

c2
− ∆y/∆t

c2
− ∆z/∆t

c2
= ∆t/γ . (10)

i.e.

∆t = γ∆τ (11)

γ>1
=⇒ time dilation

Note that v = c (photons, gravitons) =⇒ ∆τ = 0
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Relativistic Doppler formula

Two signals emitted in S at te1 = 0, te2 = T and xe
1 = xe

2 = 0.

In S′ we obtain emission events

te′1 = 0 (12a)

xe′
1 = 0 (12b)

and

te′2 = γT (13a)

xe′
2 = γvT (13b)

The signals are detected by an observer sitting at x ′ = a� γvT at

td′1 =
a

c
(14a)

td′2 =
a− xe′

2

c
+ te′2 =

a

c
+ γT − γ v

c
T , (14b)

that is T ′ = td′2 − td′1 = (1− v
c

)γT satisfies

T ′ = T

√
c − v

c + v
(15)

=⇒ relativistic Doppler effect
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Four-momentum

Energy & momentum depend on reference frame:

E ′ = γ(E +
v

c
cpx) (16a)

cp′x = γ(cpx +
v

c
E) (16b)

with ε2 = E 2 − c2p2
x − c2p2

y − c2p2
z Lorentz invariant

In S0 have px,0 = py,0 = pz,0 = 0 =⇒ ε = m0c
2 (for all S)

E 2 = m2
0c

4 + p2c2 (17)

Massless particles (photons, gravitons) =⇒ E = pc

Total four-momentum conserved in all dynamical processes:

E = const. px = const. py = const. pz = const. (18)

Alternative derivation of relativistic Doppler for photons

~ω′ = E ′ = γ(E +
v

c
c · E

c
) = γ(1 +

v

c
)~ω =⇒ ω′ =

√
c + v

c − v
ω . (19)
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Compton scattering

=⇒ What is λ′(λ, θ) ?

Conservation of four-momentum:

hc

λ
+ mec

2 =
hc

λ′
+
√

m2
ec4 + p2c2 (20a)

h

λ
=

h

λ′
cos θ + p cosψ (20b)

0 =
h

λ′
sin θ − p sinψ (20c)

Therefore

p2 = p2 sin2 ψ + p2 cos2 ψ = h2

(
1

λ2
+

1

λ′2
− 2

λλ′
cos θ

)
(21)

We eventually obtain

λ′(λ, θ) = λ+
h

mec
(1− cos θ) (22)
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Aberration of light

Light ray propagating in S, not parallel to x

E = ~ω (23a)

cpx = ~ω cos θ (23b)

cpy = ~ω sin θ (23c)

In S′ we have

E ′ = γ~ω(1 +
v

c
cos θ) (24a)

cp′x = γ~ω(cos θ +
v

c
) (24b)

with cp′y = cp′y = ~ω sin θ. Therefore tan θ′ = p′y/p
′
x = sin θ/γ(cos θ + v

c
) i.e.

cos θ′ =
cos θ + v

c

1 + v
c

cos θ
(25)

For θ = π
2

and θ′ = π
2
− α′ we have sinα′ = v

c
=⇒ α′

v�c
≈ v

c
=⇒ classical aberration

In astrophysics: relativistic beaming (Problem 2), Poynting–Robertson effect (Problem 3)
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Principles of General Relativity

There is no gravitational force

All effects due to gravity can be explained by curvature of spacetime.

Proper time interval modified to

∆τ 2 = − 1

c2

3∑
µ,ν=0

gµν∆xµ∆xν (26)

ref. frame coords x0 = t, x1 = x , x2 = y , x3 = z and gµν(x) expressing the curvature

A. Einstein (1915):
1 Spacetime tells matter how to move:

All objects follow the shortest possible path (geodesic) in spacetime.

2 Matter tells spacetime how to curve:

Rµν −
1

2
R gµν =

8πG

c4
Tµν

Special relativity formulae continue to hold, but only locally.
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Schwarzschild spacetime

Vacuum everywhere except for a gravitating body M at r = 0 gives proper time interval

∆τ 2 =

(
1− 2GM

rc2

)
∆t2 − 1

c2

(
1− 2GM

rc2

)−1

∆r 2 (27)

During ∆t, observers r1 and r2 at rest experience proper time intervals

∆τi =

(
1− 2GM

ric2

) 1
2

∆t =⇒ ∆τ2

∆τ1
=

(
1− 2GM

r2c2

1− 2GM
r1c2

) 1
2

> 1 for r2 > r1 (28)

=⇒ gravitational time dilation; note that ∆τ1/∆τ1 →∞ as r1 → Rg = 2GM/c2

Consequence: photon emitted at r = R will have following redshift at r =∞

z =

(
1− 2GM

Rc2

)− 1
2

− 1 (29)

=⇒ gravitational redshift
Can compute radial photon trajectories by setting ∆τ = 0

dr

dt
= ±

(
1− 2GM

rc2

)
(30)
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Cosmological principle

All present observations indicate that

On large scales, the universe is homogeneous, isotropic, flat and expanding.

Distance between any two objects can therefore be written as

∆r(t) = a(t) ∆r (31)

where ∆r is their present distance and a(t) is increasing in time with a(t0) = 1

Terminology

∆r(t) physical distance
∆r comoving distance
a(t) scale factor

Corresponding proper time interval (Friedmann-Lemâıtre-Robertson-Walker)

∆τ 2 = ∆t2 − 1

c2
a(t)2∆r 2 (32)

with ∆r comoving distance.
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Evolution of a(t)

Flatness condition ρ = ρcrit gives

H(t)2 =
8πG

3
ρ(a) (33)

where H(t) = ȧ(t)/a(t) is the Hubble parameter (speed of expansion)

Spacetime tells matter how to move:

ρ(a) =


ρ0a
−3 matter

ρ0a
−4 radiation

ρ0 dark energy
(34)

Solving (33) for a(t) we have

a(t) =


(t/t0)

2
3 matter

(t/t0)
1
2 radiation

eH0(t−t0) dark energy

(35)

together with

H(t) =


2/(3t) matter
1/(2t) radiation
H0 dark energy

(36)
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Present-day parameters

Define the present-day density parameters

Ωx =
ρx,0
ρcrit,0

(37)

where x ∈ {m, r,Λ}.

Flatness condition (33) can then be rewritten as

H(a) = H0

√
Ωma−3 + Ωra−4 + ΩΛ (38)

Sometimes define the reduced Hubble parameter h = H0/(100 km s−1 Mpc−1)

We then have

ρcrit,0 =
3H2

0

8πG
≈ 1.878× 10−26h2 kg m−3 (39)

Current ΛCDM fit gives

h 0.6774± 0.0046
Ωm 0.3089± 0.0062
ΩΛ 0.6911± 0.0062
Ωr 0.0001

J. Vošmera Cosmology and Relativity for IOAA
3rd IWAA, Zánka, Hungary September 5, 2018 17

/ 33



Observables: cosmological redshift

Physical lengths expand with a(t)

λ′ =
a(t0)

a(t)
λ . (40)

for a photon emitted at t detected now. Hence

a(t) =
1

1 + z
(41)

Important: this is not a Doppler redshift. Speeds calculated using Doppler formula have
no physical basis.

Can use (41) to rewrite (38) as

H(z) = H0

√
Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ (42)

Some important redshifts

Matter-radiation eq. 3000
Recombination 1100
Dark ages 1100 − 20
Reionization 20 − 6
GN-z11 11.09
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Observables: luminosity and angular diameter distance

We can measure intensity I of a source with luminosity L. Ignoring extinction have

I =
L

4πr 2
L

, (43)

where rL defines the luminosity distance.

To relate this to the comoving distance r , note that
1 energies of all photons decrease by (1 + z)−1

2 time intervals between photons increase by (1 + z)

This gives

rL = r(1 + z) (44)

We can also measure the angular diameter δ of a source with physical diameter D. We
have

δ =
D

rA
(45)

Converting D to comoving scale, we obtain

rA =
r

1 + z
(46)
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Hubble’s law

Basic trick:

Comoving dist. rAB between A and B can be found by connecting them with a photon.

Comoving distance ∆r traversed by a photon over interval ∆t

∆r =
∆r(t)

a(t)
=

c∆t

a(t)
(47)

Hence (can be also derived from the FLRW proper time interval (32))

rAB = c

∫ tB

tA

dt

a(t)
. (48)

This is particularly useful: all things we see on the sky are connected to us by a photon!

Use (49), (41) and (42) to calculate comoving dist. r at redshift z as (Hubble’s law)

r(z) = c

∫ z

0

dz ′

H(z)

z�1
≈ cz

H0
. (49)

Note that the approximation becomes exact in Λ-dominated universe H(z) = H0 = cons
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Derivation of Hubble’s law**

We have

r(z) = c

∫ t0

t

dt

a
= c

∫ 1

a(z)

da

aȧ
= c

∫ 1

a(z)

da

a2

1

H(a)
(50)

where in the last step we used the definition H = ȧ/a.

Further changing the variables to redshift, we obtain

r(z) = c

∫ z

0

dz ′

H(z ′)

1

a(z ′)2

1

(1 + z ′)2︸ ︷︷ ︸
=1

= c

∫ z

0

dz ′

H(z ′)
. (51)

Hence, for z � 1, it follows that

r(z) ≈ cz

H0
. (52)
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Some omnipresent derivatives and integrals

Derivatives:

d

dt
tp = ptp−1 (53a)

d

dt
eHt = HeHt (53b)

d

dz
(1 + z)p = p(1 + z)p−1 (53c)

Integrals: ∫
dt tp =

tp+1

p + 1
p 6= −1 (54a)∫

dt eHt =
1

H
eHt (54b)∫

dz (1 + z)p =
zp+1

p + 1
p 6= −1 (54c)
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Example calculations: matter- and Λ-domination

matter-dominated universe ≡ Einstein – de Sitter universe

Have a(t) = (t/t0)
2
3 , H(z) = H0(1 + z)

3
2 and so

r(z) =
c

H0

∫ z

0

dz ′ (1 + z ′)−
3
2 =

2c

H0
[1− (1 + z)−

1
2 ] (55a)

rL(z) and rA(z) follow straightforwardly. For z � 1, we indeed have

2c

H0
[1− (1 + z)−

1
2 ] ≈ 2c

H0
[1− (1− 1

2
z)] =

cz

H0
(56)

Λ-dominated universe ≡ de Sitter universe

Have a(t) = eH0(t−t0), H(z) = H0 = const. and so

r(z) =
c

H0

∫ z

0

dz ′ =
cz

H0
(57a)

=⇒ Hubble’s law linear for all z
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Cosmological horizons

Past comoving horizon: maximum comoving distance from which the particles could
have travelled to influence us at present

rPCH = c

∫ t0

0

dt

a(t)
= c

∫ ∞
0

dz

H(z)
(58)

Future comoving horizon: maximum comoving distance to which we can travel starting
at present.

rFCH = c

∫ ∞
t0

dt

a(t)
= c

∫ 0

−1

dz

H(z)
(59)

Not all universes have past and future horizons, i.e. it can happen that rPCH,FCH =∞
Examples: in Einstein – de Sitter have

rPCH =
c

H0

∫ ∞
0

dz (1 + z)−
3
2 =

2c

H0
, rFCH =

c

H0

∫ 0

−1

dz (1 + z)−
3
2 =∞ (60)

while in de Sitter universe have

rPCH =
c

H0

∫ ∞
0

dz =∞ , rFCH =
c

H0

∫ 0

−1

dz =
c

H0
(61)
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Problem 1: Neutron star

Observed spectrum of a galactic neutron star contains a line at E = 400 keV. This line
should correspond to the e+e− → 2γ annihilation. Assume me = 511 keV/c2

a) Calculate the radius R of the neutron star as a multiple of Rg = 2GM/c2.

b) Assuming that the bulk of the star consist of nuclear matter with density
ρ = 4× 1017 kg m−3, find M/M� and R in km.

Solution:

a) Annihilation occurs preferentially when kinetic energies are much lower than rest
masses. Hence Eγ = mec

2 = 511 keV and so z = Eγ/E − 1 ≈ 0.28. This gives
R/Rg ≈ 2.6.

b) We obtain

2.6 ≈ R

Rg
=

Rc2

2GM
=

3c2

8πρGR2
=⇒ R ≈ 12.5 km

and M = 4
3
πρR3 ≈ 1.6M�.
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Problem 2: GN-z11

Assume that H0 = 67.8 km s−1 Mpc−1

a) Find the value of a∗ and z∗ when matter and dark energy had equal densities.

Consider the high-redshift galaxy GN-z11 with z = 11.09.

b) Find the comoving distance to GN-z11.

c) What was the age of the universe when the photons, which we observe today, were
emitted from GN-z11? What is the actual distance travelled by these photons?

d) Given its observed angular diameter δ = 0.5′′, find its physical diameter D.

e) Given its magnitude m = 26.8 mag, estimate its luminosity (neglecting extinction).

Solution:

a) We need Ωm,0(1 + z)3 = ΩΛ,0, i.e. a∗ = (Ωm,0/ΩΛ0 )
1
3 ≈ 0.75 and

z∗ = 1/a− 1 ≈ 0.33

b) We have

r =

∫ z

0

cdz ′

H(z ′)
=

c

H0

∫ z∗

0

dz ′+
c

H0

∫ z

z∗
dz ′(1+z ′)−

3
2 =

2c

H0
[
z∗

2
+(1+z∗)−

1
2−(1+z)−

1
2 ]

i.e. r = 6.6 Gpc. Linearised Hubble’s law would instead give 49 Gpc.
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Problem 2: GN-z11

c) Have (t∗/t)2/3 = (1 + z)/(1 + z∗) and a∗ = eH0(−t0+t∗), so t∗ ≈ 9.65× 109 y and so
t ≈ 350× 106 y. The photons therefore travelled distance ≈ 13.4× 109 ly ≈ 4.1 Gpc.

d) The angular diameter distance is equal to rA = r/(1 + z) ≈ 0.55 Gpc. The linear size
then follows as D = rAδ ≈ 1200 pc.

e) We have luminosity distance rL = (1 + z)r ≈ 80 Gpc. We then have

m −M� = −2.5 log
(10 pc)2L

r 2
LL�

=⇒ L = L�

(
rL

10 pc

)2

10−0.4(m−M�)

i.e. L ≈ 1011L�.

J. Vošmera Cosmology and Relativity for IOAA
3rd IWAA, Zánka, Hungary September 5, 2018 28

/ 33



Problem 3: The further the bigger

Assuming matter dominated universe and a galaxy of fixed physical size D, show that
there is a value z∗ of redshift where the observed angular diameter of the galaxy starts
increasing with increasing z .

Solution: we have

δ(z) =
D

rA(z)
=

1 + z

r(z)
D ,

where

r(z) = c

∫ z

0

dz ′

H(z ′)
=

c

H0

∫ z

0

(1 + z)−
3
2 =

2c

H0
[1− (1 + z)−

1
2 ] ,

so

δ(z) =
H0D

2c

1 + z

1− (1 + z)−
1
2

.

This can be shown to have a minimum at z∗ = 5/4.
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2c

1 + z

1− (1 + z)−
1
2

.

This can be shown to have a minimum at z∗ = 5/4.
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Problem 4: Gershtein – Zeldovich bound

We have nνe = nνµ = . . . = (3/11)nγ , where nγ and nνe , nνµ , . . . are the number
densities of relic photons and relic neutrinos, respectively, and today we have
nγ

.
= 410 cm−3. Assuming that relic neutrinos are the sole component of dark matter in

our universe, find the sum m0 = mνe,0 + mνµ,0 + . . . of the rest masses of all neutrino
species. Write your answer in eV/c2.

Solution: we have
Current density of relic neutrinos:

ρν = ρνe + ρνµ + . . . = mνe,0nνe + mνµ,0nνµ + . . . =
3

11
nγm0 ,

(entropy conservation for e+e− → 2γ)

The universe is flat =⇒ ρc = 3H2
0/(8πG).

Dark matter consists of neutrinos only =⇒ ρν = ρDM

ρν =
3

11
nγm0 = Xρc =

3XH2
0

8πG
=⇒ m0 =

11XH2
0

8πGnγ

.
= 11 eV/c2 .

This gives an upper bound (Gershtein–Zeldovich)
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Problem 5: Relativistic beaming effect

Consider a star with magnitude m = 0 mag and zero radial speed. What would be the
magnitude if we started moving towards the star at speed v = 0.5c?
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Problem 6: Breakthrough starshot*

How long would it take to accelerate a solar sail with m = 1 g to v = 0.2c with a
100 GW laser?
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Problem 7: Sunyaev – Zeldovich effect

Consider electron at rest and an incident photon, wavelength λ.

a) Fill in the gaps in the derivation of the Compton formula for λ′(λ, θ)

Now consider a galaxy cluster with total mass M = 1.2 · 1015MS.

b) Consider intracluster gas at equilibrium with particle mass m0. Derive an
approximate formula for its typical temperature.

c) Evaluate this temperature for hydrogen and free electron gas. Comment.

Interaction of intracluster electron gas with CMB photons gives rise to the Sunyaev –
Zel’dovich effect. The cluster is at rest relative to CMB frame.

d) Find the typical magnitude of change of wavelength of a single CMB photon
scattered by an intracluster electron.

You can simplify your analysis by considering only co-linear collisions in the CMB frame.

e) Consider the net change of wavelength of CMB photons and decide whether it is
positive (i.e. the photons get cooler) or negative (the photons are heated).

f) Estimate the corresponding change in the CMB temperature.
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