THEORETICAL PROBLEMS

1. (S) Calculate the diameter of a telescope in which the star ¢ CMi (5.13™) would appear as bright as
Sirius (—1.46™) to the unaided eye. Assume that the diameter of the pupil of the eye is 6 mm and that
30 % of the light incident on the telescope collecting area is lost. (30p)

2. (S) Compute the rotational period and magnetic field of a main sequence (MS) star with 1 solar mass,
assuming that it changes its size according the following table (it became giant or white dwarf). Assume
that during the stellar evolution the stars conserve their angular momentum as well as magnetic induction

flux. (30p)
\ \ radius \ rot. period \ magnetic field \
MS star 700000 km 25 days 107%T
Giant 200 R
White Dwarf | 20000 km

3. (S) A solar-sail spaceship (with its sail folded) orbits the Sun around a circular orbit of radius a. The
reflectance of the sail is k£ and its total area is S. The mass and luminosity of the Sun are denoted by M
and L. At one moment, the ship hoists its sails towards directly to the Sun. Find the new semi-major axis
of the ship after it hoists its sail such that it always faces the Sun. What condition on £ must be satisfied
so that the ship does not leave solar system? Give your answer in terms of a, m, .S, M, L. and fundamental
constants. (40 p)

4. (M) The small radius and high density of a white dwarf can be traced to the behavior of a degenerate
electron gas in a gravitational field. Chandrasekhar found that the more massive the white dwarf, the
smaller its radius. The equation of state for an ordinary gas is very simple: p = nkT or p = koT/m,
where p is the pressure, n the number density, ¢ the mass density, m the average mass of one particle, T'
the temperature, and k& Boltzmann’s constant. If the density is high enough to render the gas degenerate
(e.g. in white dwarfs), a different equation of state applies: p = K03, where K is a constant. Derive an
expression between the radius R and the mass M of a white dwarf. Hint: You may need an approximate
expression between the internal pressure, which balances the gravity, and the mass and radius of the star.
To derive this equation divide the sphere of the star by a plane into two equal halves. (50 p)

5. (M) In this problem, let us first assume that the universe was radiation-dominated from the Big Bang
up to recombination zoyp ~ 1100 and has been matter-dominated ever since. You can also assume that
the estimated age of the universe is ty = 13.80 x 10° yr, the Hubble parameter is Hy = 67.8 kms~! Mpc™!
and the current energy of CMB is about 103 eV.

a) Find the angular distance of two points on the CMB map, which could have exchanged a photon
since the Big Bang. (35p)

You should find that this distance is less than 180°. This gives a paradox (called horizon paradox) because
even the antipodal points of CMB are well correlated. Assume therefore, that the radiation-dominated
period was preceded by a very short period of rapid exponential expansion called inflation. The standard
model requires the inflation to end when typical energies in the universe reach the GUT scale 10'° GeV.

b) How many times (/N) the universe would have had to expand during inflation in order for the horizon
paradox to disappear? Express your answer as N = e? for some number p. (35p)

(70p)

6. (L) In this question you will explore some possibilities of determining the position of a gravitational
wave (GW) signal on the sky based on timing data from the three running detectors: LIGO at Hanford
& Livingston and Virgo near Pisa. For the purposes of this question, let us assume that the gravitational
waves propagate at the speed of light.



The three GW detectors are located at geographical coordinates which we denote by ¢;, A; (latitude,
longitude), where i« = H, L, V stand for Hanford, Livingston and Virgo. At this point we leave the values
of these coordinates unspecified. Let us denote the radius of the Earth by R.

a) Express the distance d;; between detectors ¢ and j in terms of ¢;, \;, ¢;,A; and R. By distance
we mean the length of the straight line segment connecting the detectors (which goes under the
terrestrial surface). (15p)

Denote by At;; the detection time difference for the detectors 7 and j. The value of At;; will typically be
of the order of milliseconds. The knowledge of At;; for a single pair of detectors will restrict the locus of
possible positions of the GW source on the sky to a circle. Note that in general this will not be a great
circle.

Initially, let us assume that the detection event occurred at 00:00 of Greenwich sidereal time.

b) Given the knowledge of At;; for a single pair of detectors i,j, determine the circle on which the
possible positions of the GW source lie. You should answer this question by specifying the equatorial
coordinates (right-ascension and declination) of the centre of this circle and its angular radius.
Express your answer in terms of At;;, ¢;, Ai, ¢;, A; and R. (20p)

Let us now assume that the detection occurred at some general Greenwich sidereal time ©.

¢) Redo part b) assuming general Greenwich sidereal time © of the detection. Express your answer in
terms of @, Atij, ¢i7 )‘i7 ¢ja )‘j and R. (5 p)

We will now consider a particular detection event, namely GW170817, which is widely assumed to be due
to a binary neutron star merger. The signal arrived to the Earth at 12:41 GMT on August 17, 2017. It
arrived first at Virgo, then 22 milliseconds later at LIGO-Livingston and another 3 milliseconds later at
LIGO-Hanford (see arXiv:1710.05833). The geographic coordinates of the three detectors are as follows

¢u = 46.4552° N Ag = 119.4075° W,
¢, = 30.5021° N AL =90.7479° W |
¢y = 43.6313° N Ay = 10.5045° E.

d) Calculate the value of © which corresponds to the detection of GW170817. The equation of time
and the R.A. of the Sun for 12:00 GMT of the given date are —4 min and 9"48™, respectively. (10p)

e) Using your results from b) and c¢), calculate the centres and angular radii of the circles on the sky
corresponding to the pairs VH, VL and LH. (10p)

f) Does the measurement of detection time differences in a system of three detectors determine the
position of the source on the sky uniquely? Calculate the possible positions (right-ascension and
declination) of the GW170817 source on the sky, which are consistent with the measured detection

time differences. Compare your results with the coordinates ap, = 1379485, &, = —23°22'53" of
the optical counterpart. Hint: Wherever justified, you may replace equation of a circle on a sphere
by the equation of a circle on a plane with the same centre and radius. (20p)

(80p)



PROBLEM No. 1

(S) Calculate the diameter of a telescope in which the star ¢ CMi (5.13™) would appear as bright as Sirius
(—1.46™) to the unaided eye. Assume that the diameter of the pupil of the eye is 6 mm and that 30 % of
the light incident on the telescope collecting area is lost. (30p)

SOLUTION:

Denote the apparent brightness and flux of the stars by my, F} (¢ CMi) and my, F5 (Sirius), then from
the definition of the magnitude scale we get

AF:
me —my = —2.5log 2 (6p)
)

where A is the reflectance of the telescope, in our case A = 0.7.

From the equation above we can derive the ratio of the fluxes as

Fy 1 —0.4(ma—
— = — x 107 04memm), 6
7oA (6p)

The ratio of the fluxes is equal to the square of the ratio of the telescope diameters, Dy and Dpyp:

D \> 1
(Dt 1 ) _ Z « 1070.4(m27m1)’ (6p)
pup
SO
1 —0.4(ma—m1)
Dye1 = Dpup le() Alma—my) (6p)

D = 149 mm (6p)



PROBLEM No. 2

(S) Compute the rotational period and magnetic field of a main sequence (MS) star with 1 solar mass,
assuming that it changes its size according the following table (it became giant or white dwarf). Assume
that during the stellar evolution the stars conserve their angular momentum as well as magnetic induction

flux. (30p)
’ \ radius \ rot. period \ magnetic field ‘
MS star 700000km | 25 days 1074T
Giant 200 R,
White Dwarf | 20000 km

SOLUTION:

From the law of conservation of angular momentum we can derive the period:
2 9 R?
Jw = const — R mR* = const — = const (7p)

The ratio of square of size and the period during the stellar evolution is constant. We can assume that
magnetic induction flux is constant too.

BS = const — B x 47 R* = const — BR? = const (7p)
’ \ radius \ rot. period \ magnetic field ‘
MS star 700000km | 25days 1074T
Giant 200 R, 2700 years | 2.5 x 1079T
White Dwarf | 20000 km 29 min 0.123T




PROBLEM No. 3

(S) A solar-sail spaceship (with its sail folded) orbits the Sun around a circular orbit of radius a. The
reflectance of the sail is k£ and its total area is S. The mass and luminosity of the Sun are denoted by M
and L. At one moment, the ship hoists its sails towards directly to the Sun. Find the new semi-major axis
of the ship after it hoists its sail such that it always faces the Sun. What condition on k& must be satisfied
so that the ship does not leave solar system? Give your answer in terms of a, m, S, M, L and fundamental

constants.
SOLUTION:

The force acting on the sail is equal to the rate of change of momentum of the ship

A LS
2P g4k

Fraa = = .
4TOAL ( ) 47er?

The resulting force acting on the ship towards the Sun is

4G Mme r2 2

F e By By — {1_(1—1—1{:)115} GMm _ G'Mm
r

where we define the effective gravitational constant

, [ (1 +RLS
¢ = [1 4rGMme G

Before the ship hoists its sail, its orbital speed is

GM
v=—.
a

Conservation of mechanical energy for the situation after the ship unfolds the sail gives

—mu® — = ,
2 a 2a’
that is
, G AtGMme — (1 + k)LS
a = a

20— G 2mGMme — 1+ k)LS "
In order for the ship to remain within the solar system, we need G’ > /2, which gives

2rGMme
< —.

ka1
+ 7S

(40p)

(5p)

(5p)

(6p)

(6p)

(6p)

(6p)

(6p)



PROBLEM No. 4

(M) The small radius and high density of a white dwarf can be traced to the behavior of a degenerate
electron gas in a gravitational field. Chandrasekhar found that the more massive the white dwarf, the
smaller its radius. The equation of state for an ordinary gas is very simple: p = nkT or p = koT/m,
where p is the pressure, n the number density, ¢ the mass density, m the average mass of one particle, T'
the temperature, and k& Boltzmann’s constant. If the density is high enough to render the gas degenerate
(e.g. in white dwarfs), a different equation of state applies: p = K03, where K is a constant. Derive an
expression between the radius R and the mass M of a white dwarf. Hint: You may need an approximate
expression between the internal pressure, which balances the gravity, and the mass and radius of the star.
To derive this equation divide the sphere of the star by a plane into two equal halves. (50 p)

SOLUTION:
How much pressure is needed to support a star? We can estimate this roughly as follows.

Imagine the star divided by a plane down the middle. The two halves each have a mass of M /2, where
M is the mass of the star, and the centers of these two hemisphere are approximately a distance R apart,
where R is the radius of the star. The force pulling the two halves together is, according to Newton’s law
of gravitation:

MM
2 2

F=G"m =g 1oe)

The force keeping the two halves apart is the pressure, p, times the area of the two hemispheres, 7R

For the gravitational force to equal the pressure force, we must have

GM?> GM?
2\ _ _
p(wR)— o PE (10p)
Now we have two expressions for the pressure. Putting these two relations together, we have
GM?>
= = Ko**. 5
b 4 R4 0 (5p)
If we express the density p in terms of the mass and radius as
M
ZrR3
57
we can write
5/3
GM? M K M3
47 R 4 4 \°3 R°
~rR3 4
3 37
Solving for R in terms of M gives:
At K 1
- 4 \5/3 M3 (10p)
G (g 7T>

That is, the radius of a degenerate star is proportional to the inverse cube root of the mass.



PROBLEM No. 5

(M) In this problem, let us first assume that the universe was radiation-dominated from the Big Bang up
to recombination zcyp ~ 1100 and has been matter-dominated ever since. You can also assume that the
estimated age of the universe is t; = 13.80 x 10? yr, the Hubble parameter is Hy = 67.8 kms~! Mpc~! and
the current energy of CMB is about 1073 eV.

a) Find the angular distance of two points on the CMB map, which could have exchanged a photon
since the Big Bang. (35p)

You should find that this distance is less than 180°. This gives a paradox (called horizon paradox) because
even the antipodal points of CMB are well correlated. Assume therefore, that the radiation-dominated
period was preceded by a very short period of rapid exponential expansion called inflation. The standard
model requires the inflation to end when typical energies in the universe reach the GUT scale 10 GeV.

b) How many times (N) the universe would have had to expand during inflation in order for the horizon
paradox to disappear? Express your answer as N = eP for some number p. (35p)

(70p)

SOLUTION:

a) 1. Approximative solution without calculus: Denote by t; the present age of the universe.
Let us first calculate at which time tcyp after the big bang the CMB was radiated. Since the
universe was matter dominated in the period between recombination and the present epoch,
We have (tcums/to)?® = 1/(1 + zcu). Consider points A and B. At the Big bang (¢t = 0), a
photon was emitted from A towards B, where it was received at tcyp. The co-moving distance
the photon travelled was approximately

ctomB

dAB ~ = Ctg(l + ZCMB>71/2 . (13 p)

acMB

The co-moving distance which photons travelled from recombination to present is approximately

dCMB =~ C(to — tCMB) =~ Cto . (].3 p)
Hence
QAB = dAB/dCMB ~ (1 + ZCMB)_1/2 ~ 1.70 . (9p)

2. Exact solution: Denote by ¢y the present age of the universe. Let us first calculate at which
time touvp after the big bang the CMB was radiated. Since the universe was matter dominated in
the period between recombination and the present epoch, we have (tcus/t0)%? = 1/(1 + zcmB)-
Consider now points A and B. At the Big bang (¢ = 0), a photon was emitted from A towards
B, where it was received at tcys. The co-moving distance traversed by the photon on the course
from A to B is therefore

lcvB

dAB = C/ —_— = QCto(l + ZCMB)_1/2~ (13 p)
0 a(t)

The co-moving distance between an observed at the Earth and the surface of last scattering can

be computed as

o dt
dCMB = C/ — = 3Ct0[1 — (]. + ZCMB)_1/2] ~ 3Ct0 . (13 p)
tcMB a(t)

The angular distance between A and B as observed from the Earth is therefore

d 2
= A8~ 21+ zowp) V2 A 115, (9p)
dom 3




b) In order for the paradox to disappear, we need 0,5 = 7, that is we need the new co-moving distance
d\p traversed by a photon emitted by A at the Big Bang and detected by B at tcyp to satisfy dyg =
2dcvp. Let us denote by tgae and tenq the times when the inflationary period started and ended.
During the inflationary period, we have a(t) el where the Hubble parameter H = Hgat = Hend
is constant during the inflationary period. We can therefore write

c CZstart cN

2dCMB == dlAB ~ E(Zstart - Zend) ~ H ~ aendH . (12p)
That is
aendHend
N =6tcHy——— 12
0f1g aHy (12p)
where
Qenad H a a 2 /q 3
end{Lend _ end ( end ) ( CMB) ~ 3 « 1025’ (11p)
aoHy ap \ AcMB Qo

where we have used that H(a) oc a=2 in the radiation dominated universe and H(a) o< a=*/? in the
matter dominated universe. We therefore obtain N ~ 2 x 10?° and so p ~ 60. We therefore arrive at
the famous result that one needs at least 60 e-folds of inflation in order to solve the horizon problem.



PROBLEM No. 6

(L) In this question you will explore some possibilities of determining the position of a gravitational wave
(GW) signal on the sky based on timing data from the three running detectors: LIGO at Hanford &
Livingston and Virgo near Pisa. For the purposes of this question, let us assume that the gravitational
waves propagate at the speed of light.

The three GW detectors are located at geographical coordinates which we denote by ¢;, A; (latitude,
longitude), where ¢ = H, L, V stand for Hanford, Livingston and Virgo. At this point we leave the values
of these coordinates unspecified. Let us denote the radius of the Earth by R.

a) Express the distance d;; between detectors ¢ and j in terms of ¢;,\;, ¢;,A; and R. By distance
we mean the length of the straight line segment connecting the detectors (which goes under the
terrestrial surface). (15p)

Denote by At;; the detection time difference for the detectors 7 and j. The value of At;; will typically be
of the order of milliseconds. The knowledge of At;; for a single pair of detectors will restrict the locus of
possible positions of the GW source on the sky to a circle. Note that in general this will not be a great
circle.

Initially, let us assume that the detection event occurred at 00:00 of Greenwich sidereal time.

b) Given the knowledge of At;; for a single pair of detectors i, j, determine the circle on which the
possible positions of the GW source lie. You should answer this question by specifying the equatorial
coordinates (right-ascension and declination) of the centre of this circle and its angular radius.
Express your answer in terms of At;;, ¢;, Ai, ¢;, A; and R. (20p)

Let us now assume that the detection occurred at some general Greenwich sidereal time ©.

c) Redo part b) assuming general Greenwich sidereal time © of the detection. Express your answer in

terms of ©, At;;, ¢i, i, @5, A; and R. (5p)

We will now consider a particular detection event, namely GW170817, which is widely assumed to be due
to a binary neutron star merger. The signal arrived to the Earth at 12:41 GMT on August 17, 2017. It
arrived first at Virgo, then 22 milliseconds later at LIGO-Livingston and another 3 milliseconds later at
LIGO-Hanford (see arXiv:1710.05833). The geographic coordinates of the three detectors are as follows

b = 46.4552° N Ay = 119.4075° W,
ér =30.5021°N Ay = 90.7479° W,
by =43.6313° N \y = 10.5045°E.

d) Calculate the value of © which corresponds to the detection of GW170817. The equation of time
and the R.A. of the Sun for 12:00 GMT of the given date are —4 min and 9"48™, respectively. (10p)

e) Using your results from b) and c), calculate the centres and angular radii of the circles on the sky
corresponding to the pairs VH, VL and LH. (10p)

f) Does the measurement of detection time differences in a system of three detectors determine the
position of the source on the sky uniquely? Calculate the possible positions (right-ascension and
declination) of the GW170817 source on the sky, which are consistent with the measured detection

time differences. Compare your results with the coordinates aop = 1389m48° 6, = —23°22'53" of
the optical counterpart. Hint: Wherever justified, you may replace equation of a circle on a sphere
by the equation of a circle on a plane with the same centre and radius. (20p)

(80p)



SOLUTION:

a) As it is usual in spherical trigonometry, there are two approaches to this question: we can either
work with vectors in Cartesian coordinates (1.) or with spherical triangles (2.).

1. Let us first consider the Cartesian coordinate system zyz where the xy plane coincides with the
equatorial plane and the x axis goes in the direction of Greenwich meridian. In such a system,
the position of detector i is specified by coordinates

(1) (Rcosg;cos \;, Rcos ¢;sin \;, Rsin ¢;) .

The distance d;; between detectors ¢ and j therefore follows as the magnitude of the relative
position vector of the two detectors, that is

dij = R [(cos ¢; cos \; — cos ¢j cos A;)* + (cos ¢; sin \; — cos ¢ sin A;)*+

(ST

(2) +(sin¢; — sin¢;)*] 2 , (10p)
which, after some algebra, can be simplified to
(3) dij= R\/Q[l — sin ¢; sin ¢; — cos ¢; cos ¢ cos(A; — Aj)] . (5p)

2. The same answer can be obtained by considering the spherical triangle D;D;N, where D; denotes
the position of detector ¢ and N denotes the north pole. The distance A;; between D; and D;
along the surface can be expressed using the spherical law of cosines as

A
(4)  cos ﬁ = sin ¢; sin ¢; + cos ¢; cos ¢; cos(A; — Aj) . (5p)
On the other hand, we have

Ay 1 — cos 2it
Al — (5p)

(5) dij =2Rcos

Substituting (4) into (5) indeed yields (3), as it should. (5p)

b) As it was the case in part a), a solution can be devised using either spherical triangles or vectors.
Here we will only consider the vector approach. It is easy to see that the line joining the two detectors
can also be characterized as the axis of the circle, which gives the possible positions of the source on
the sky. The centre of the circle can therefore be determined as the direction of the relative position
vector of the two detectors. Since for the Greenwich sidereal time we have © = 0"0™0°, the equatorial
and geographic coordinate systems are aligned. That is, the direction to the vernal equinox point
(a = 0°) coincides with the Greenwich meridian (A = 0°). After some algebra, one can show that
the equatorial coordinates of;, 7; of the centre of the circle are determined by the relations

(6a) sindj; = g(sin ¢; —sin ;) ,
ij

COS ¢; sin \; — cos ¢; sin \;

6b) t Co= .
(6b) tan iy COS (h; COS \; — COS (j COS \;

The angular radius of the circle can be determined from the time difference At;; as

CAtz‘j
d,’j .

(7)  cospy =



)

The effect of assuming general © is merely to replace \; = \; + O, or equivalently a;; — «;; — © for
all 7, j in the above formulae. The formulae (7) and (6a) for p;; and &f; therefore remain unchanged
and we obtain

Ccos ¢; sin \; — cos ¢; sin \;

(8) tan(al — ©) = (5p)

* COS (; COS \; — COS P; COS N

We first need to remember that the equation of time gives the discrepancy between the apparent
and mean solar time:

(9) E.T. = apparent — mean. (10p)

Further to this, we have © = ag, + apparent. Combining these two results, we obtain © = 10"25™.

Substituting numerical values into the formulae derived in b) and ¢), we obtain

(10a)

ay, = 210.2° v, = +8.45° pvL = 33.55°,
(10b)

aSy = 191.1° 6% = —1.56°  pym = 23.56°
(10c)

afy = 117.6° 0y = —27.4°  puyg = 72.58° .

(10p)

Obviously, only two detection time differences are fully independent: the third one always follows
automatically. Therefore, only two of the three circles which one can construct give independent
information about the position of the source. That is, the three circles will generally intersect at
two points. Of course, to find these two points, it is sufficient to only consider intersections of two
of the three circles. If we were to work exactly, we would use spherical trigonometry to write down
equations for the two circles and solve them simultaneously to obtain the coordinates of intersections.
However, such a system of equations can only be solved using advanced numerical methods. On the
other hand, we may notice that circles VL and VH are centered near the equator, so, working in
radians, their equations are very well approximated by equations of ordinary circles with radii p;;.
It is then very easy to solve for the coordinates of the two intersections. We have

(11a)

ap = 13"18™  § = —23°18
(11b)

as = 11"52™  §y = +17°35.

(20p)

We therefore observe that the first solution agrees very nicely with the coordinates of the optical
counterpart! Note that had we worked exactly, i.e. without approximating the circles on the sphere
by planar circles, we would have obtained values o; = 13"18™, §; = —23°24’. Given the experimental
error in determining the detection time differences, such a small difference is completely immaterial.



