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A significant part of modern physics research can be
classified as the study of quantum matter. The aim is to de-
scribe the phases of large numbers of interacting particles at
temperatures low enough that quantum mechanics plays a
crucial role in determining the system’s distinguishing char-
acteristics. For electrons in solids, the needed “low” temper-
atures can be even higher than room temperature. Gases of
trapped atoms require ultracold temperatures in the
nanokelvin range. And through collisions of heavy nuclei,
groups at particle accelerators are pursuing a quantum
plasma of quarks with temperatures approaching those real-
ized soon after the Big Bang. Remarkably, a common set of
ideas on the phases of quantum matter applies across that
wide range of energy scales.

Electron systems in solids are one of the best places to
study quantum matter. With modern fabrication techniques,
one can make an almost infinite variety of crystals, which
provide a rich test bed for experimental investigations and
theoretical descriptions of quantum phases. This article fo-
cuses on certain phase transitions the electrons undergo at
the absolute zero of temperature. There are no thermal fluc-
tuations at absolute zero. Instead, the transitions are driven
by quantum fluctuations demanded by Heisenberg’s uncer-
tainty principle. The quantum critical point, where the tran-
sitions occur, is present only at absolute zero, but its influence
nevertheless is felt in a broad regime of “quantum criticality”

at nonzero temperatures, and it is the key to understanding
a variety of experiments.

The most common quantum phases of electrons should
be familiar to most readers: metals, with electrons occupying
mobile plane-wave states; superconductors, with electrons
forming Cooper pairs that can transport charge without dis-
sipation; insulators, in which charge transport requires the
exciting of electrons across an energy gap, which rarely hap-
pens at room temperatures; and semiconductors, which are
essentially insulators with a smaller energy gap.

Such a classification focuses on the motion of the charge
carried by the electron. However, the electron also has spin,
and a study of the spin configuration in the electron wave-
function allows a more subtle classification of quantum
phases. The rich variety of magnetic phases includes ferro-
magnets and antiferromagnets. The magnetic phases can be
metals, superconductors, insulators, or semiconductors in
their charge degrees of freedom.

Much recent experimental work has focused on so-called
correlated-electron materials. In such materials, the electrons
can occupy the atomic d or f orbitals, whose smaller spatial
extent increases the importance of the Coulomb repulsion be-
tween the electrons, so the electrons’ motion must be corre-
lated to ensure that they stay apart from each other. Although
most correlated-electron materials realize one of the common
quantum phases above, many can be tuned between two or
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Figure 1. Cobalt niobate

(CoNb2O6) provides an archetypal
example of a quantum phase tran-
sition.1 As the schematic of its crys-
tal structure shows, the Co2+ ions
have unpaired spins. In the ab-
sence of an applied magnetic field,
the spins orient either parallel or
antiparallel to a preferred axis in
the ac-plane, forming a ferromag-
net. When a transverse magnetic
field is applied along the b axis and
its strength g is increased, it even-
tually induces a different spin
state, a quantum paramagnet with
the spins aligned in the field direc-
tion. The spins undergo a  second-
 order quantum phase transition at
a critical field strength gc.
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more phases by varying an external parameter. The parame-
ter could be the pressure applied to the solid, the strength of
an external magnetic field, or the density of electrons in the
solid (which can be controlled, for example, by the concen-
tration of dopant ions). Temperature isn’t in this list of exter-
nal parameters: We are considering changes in the ground
state of the electrons and are not yet interested in the thermal
excitations above it. In this article we will generically refer to
the tuning parameter as g. As g is varied, there is the possi-
bility at some critical point g = gc of a quantum phase transi-
tion: a qualitative change in the ground-state wavefunction
of a large many-body system on smoothly changing one or
more coupling constants in its Hamiltonian.

Sometimes, the transition between the two phases can
involve sudden jumps in physical properties; such a first-
order quantum transition is analogous to a first-order ther-
mally driven phase transition, like water boiling to steam.
More interesting and quite common, however, is the contin-
uous transition, in which the change is more gradual.

A key feature of a  second- order quantum phase transi-
tion is the special nature of the ground state precisely at g = gc.
Far away from the quantum critical point, the system is usu-
ally in one of the states mentioned above, such as a metallic
antiferromagnet, for which one can write down a straightfor-
ward wavefunction involving a product of simple configura-
tions of all the electrons. For a first- order transition, those
simple states are found on both sides of the transition all the

way to g = gc , and the quantum state just jumps from one to
the other upon crossing the transition. For a continuous tran-
sition, in contrast, the wavefunction at g = gc is very different
from a product state: It is a complex quantum superposition
of an exponentially large set of configurations fluctuating at
all length scales. In modern parlance, the critical-point wave-
function has long-range quantum entanglement. Albert Ein-
stein, Boris Podolsky, and Nathan Rosen emphasized the
 peculiar nonlocal nature of quantum entanglement in their
famous 1935 thought experiment on a single pair of electrons;
a similar entanglement appears here in a system of a very
large number of electrons and between electrons separated
at all length scales.

Quantum-critical states are among the most complicated
quantum states ever studied, and describing them efficiently
is an important goal of theoretical studies of quantum criti-
cality. In almost all cases, one cannot even explicitly write
down the critical wavefunction; instead, one must usually re-
sort to tools from quantum field theory or from numerical
simulations to extract the subtle quantum correlations be-
tween the electrons.

The quantum-critical state at g = gc is defined by the
ground-state wavefunction, so, strictly speaking, it is present
only when the temperature T is at absolute zero. Thus, from
an experimental perspective, it may seem that a continuous
quantum phase transition, and its exotic entangled critical
point, is an abstract theoretical idea of little practical interest.
However, as described below, the influence of the critical
point extends over a wide regime in the T > 0 phase diagram.
That regime of quantum criticality is the key to explaining a
wide variety of experiments.

The quantum Ising chain
Two paradigmatic examples from recent experiments illus-
trate quantum phase transitions and quantum criticality.
Both examples are in insulators, so the electron charge is
 localized and we can focus attention solely on the orientation
of the electron spins on different sites in the crystal lattice.

In cobalt niobate, CoNb2O6, only the total electronic spin
on the Co2+ ion is able to choose its orientation. Because of
spin– orbit effects, the Co2+ spins have a lower energy when
their spins are either parallel or antiparallel to a preferred
crystalline axis; such spins are referred to as Ising spins. We
denote the two possible electronic spin states on the Co2+ ion
at site j by ∣↑〉j and ∣↓〉j. In quantum computing terminology,
each Co2+ ion realizes a qubit. The spin Hamiltonian of
CoNb2O6 has a coupling between neighboring spins along
one-dimensional zigzag chains in the crystal, shown in
 figure 1, so that the spins prefer to be parallel to each other.
Consequently, in its ground state, CoNb2O6 is a ferromagnet,
with all spins parallel (figure 1, left). There are two possible
ferromagnetic ground states:

(1)

where N is the total number of spins in the chain. The ground
states are simple product states, as expected far from a quan-
tum critical point. The crystal chooses one of the two states
depending on small external perturbations. That choice be-
tween the states breaks the reflection symmetry across the
xy-plane, under which ∣↑〉j is interchanged with ∣↓〉j.

One can drive a quantum phase transition in CoNb2O6
by applying a magnetic field transverse to the preferred crys-
talline axis, as was done recently by Radu Coldea and col-
leagues.1 The strength of the transverse field is the tuning
 parameter g. As g → ∞, a ground state very different from
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Figure 2. Thallium copper chloride (TlCuCl3) exemplifies an-
other quantum phase transition.2 The Cu2+ ions boast active
spin-1⁄2 states. At ambient pressure, the spins pair into dimers
and form singlet bonds (∣↑↓〉 − ∣↓↑〉)/√2⎯, as indicated by the
 ellipsis (top). The behavior is similar to that of a so-called dimer
 antiferromagnet on a square lattice. The solid red lines repre-
sent strong spin interaction with a positive exchange coupling
J > 0, while the dashed green lines have a weaker exchange
coupling J/g, with g ≥ 1. The ground state of TlCuCl3 is similar
to the dimerized, large-g ground state of the dimer antiferro-
magnet, which behaves like a quantum paramagnet (right).
For TlCuCl3, g is inverse pressure. As the pressure increases and
g decreases, TlCuCl3 undergoes a quantum phase transition to
Néel antiferromagnetic order, in which neighboring spins are
antiparallel. In the dimer antiferromagnet model, the transition
to Néel order occurs at a quantum critical point g= gc.
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equation 1 must appear. Because of the Zeeman coupling, all
spins must orient parallel to the applied field; for a field in 
the x- direction, that leads to the unique ground state

(2)

Expanding the product in equation 2 yields an equal super-
position of all 2N states of the N qubits, a fact that is put to
good use in quantum computing. Unlike the states in equa-
tion 1, the state in equation 2 is invariant under the inter-
change of ∣↑〉j and ∣↓〉j, so it does not break the xy-plane reflec-
tion symmetry. It is not a ferromagnet but instead is termed
a quantum paramagnet.

It is not possible to vary g and smoothly connect the
states in equation 1, obtained for g = 0, to the state in equa-
tion 2, obtained for g → ∞. That is clear from the fact that re-
flection symmetry is broken in the former states but not in
the latter. Thus there must be a point of nonanalyticity in g,
where the ferromagnetic moment in the ground state van-
ishes and symmetry is restored; that is the quantum critical
point, gc.

We can now describe the continuous quantum phase
transition, and the nature of the ground-state wavefunction
as a function of g, more completely. The simple product
wavefunctions in equations 1 and 2 describe g ≪ gc and g ≫ gc.
Precisely at g = gc, the quantum-critical state is a highly non-
trivial quantum superposition of all 2N spin configurations,
and correlations between spins decay as a power law of dis-
tance. The alert reader will notice that ∣⇒〉 also involves a su-
perposition of all 2N states in the up–down basis, but it is an
equal-weight superposition of all the states, so it can be writ-
ten as a simple product state in the left–right basis. In con-
trast, there is no local basis for which the quantum-critical
state at g = gc takes a simple form—it is quantum entangled.

Points not too far from g = gc are characterized by a cru-
cial length scale, the ground-state spin coherence length ξ.
Averaged over length scales larger than ξ, the wavefunction
reduces to the simple product form appropriate for g ≫ gc
(when g > gc) or g ≪ gc (when g < gc). But at length scales
smaller than ξ, the wavefunction looks like the entangled
state at g = gc; in a sense, at scales shorter than ξ the electrons
have not “decided” which side of the quantum phase transi-
tion they are on, so they acquire the intricate characteristics
of the critical point between the phases. The value of ξ varies
as a function of g, and a central characteristic of the continu-
ous quantum phase transitions we consider here is that ξ di-
verges as ∣g − gc∣ approaches zero.

The changes in the ground-state wavefunction as a func-
tion of g are accompanied by corresponding changes in the
nature of the low- energy excitations. By detecting those ex-
citations in neutron scattering experiments1 (see PHYSICS
TODAY, March 2010, page 13), Coldea and coworkers demon-
strated the existence of a continuous quantum phase transi-
tion in CoNb2O6.

Dimer antiferromagnet
Our second example, the dimer antiferromagnet, is realized
in thallium copper chloride, TlCuCl3. In that material, each
Cu2+ ion has an unpaired, localized electron spin. Let Sj be the
spin-1⁄2 operator for site j, and let the exchange couplings Jij
characterize the strength of the spin–spin interactions be-
tween the Cu2+ ions. The spins are then described by the
Hamiltonian

(3)

A key feature in TlCuCl3 is that Jij ≥ 0: The couplings are anti -
ferromagnetic and prefer antiparallel spins, unlike the spin–
spin couplings of the Ising chain above. Furthermore, they
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The two noncritical ground states of the dimer antiferromagnet
in  figure 2 have very different excitation spectra. In the quantum
paramagnet regime, let ∣s〉i denote the spin- singlet valence bond
(∣↑↓〉 − ∣↓↑〉)/√2⎯ on dimer i. The ground state is approximately

Any one dimer, say i, can be excited to one of three possible
triplet states ∣tm〉i with spin S = 1:

A collection of Nd excited dimers can be viewed in momen-
tum space as “triplon” particles of momentum k,

where ri is the position of excited dimer i. One can form
wavepackets to localize the triplons in space.

In the Néel state, the ground state is the staggered spin con-
figuration shown in  figure 2. Spin-wave excitations, in which the
orientation of the local Néel order is rotated slowly in space, have
nearly zero energy. A second class of excitations are oscillations
in the magnitude of the average local magnetization; those exci-
tations are the analogue of the Higgs particle.

The excitations of the dimer antiferromagnet thallium copper

chloride (TlCuCl3) have been measured by Christian Rüegg and
colleagues using neutron scattering2 and are shown in the fig-
ure. Applied pressure serves as the inverse of the tuning param-
eter g. The blue dots show the energy of the triplon excitations
of the quantum paramagnet. In the Néel regime, the white cir-
cles are the spin-wave excitations, and the red circles are the
magnetization oscillations.

∣G s〉 = ∏ ∣ 〉 .i
i
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Box 1. Excitations in the dimer antiferromagnet
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are dimerized: Each spin j is coupled strongly to only a single
partner spin; the couplings to all other spins are smaller. Fig-
ure 2 presents a simple model of a dimer antiferromagnet that
has couplings J and J/g, with g ≥ 1.

In that model, the ground state for g = 1 has Néel (or an-
tiferromagnetic) order, with the spins polarized in a checker-
board pattern. Each spin has a definite orientation—the sym-
metry of spin rotations has been broken. The state’s
wavefunction again has a simple product form. The Néel
ground state is the analogue of the ferromagnetic state of the
Ising chain, except that now the spins are polarized in a stag-
gered spatial pattern. Each up spin has down neighbors (and
vice versa), so each term in H is negative.

Now, the ground state for g → ∞ is very different. At
g = ∞, the couplings between different dimers vanish and the
Hamiltonian decouples into a sum over independent pairs of
spins. We can easily find the ground state for each dimer of
spins: It is the singlet valence bond, (∣↑↓〉 − ∣↓↑〉)/√2‾, which is
 rotationally invariant. Although the two spins are always
 antiparallel, they are equally likely to point in any direction
in spin space. The ground state of the full system at g = ∞ is
then a product over such singlet valence bonds, as illustrated
in  figure 2, and is also a quantum paramagnet.

The remaining discussion for H parallels that for the
Ising chain. There is Néel order, with broken spin-rotation
symmetry, for a range of g. Spin-rotation symmetry is re-
stored at a quantum critical point g = gc, beyond which the
ground state is a spin-singlet quantum paramagnet. There is
a continuous transition at gc, where the ground state has non-
trivial entanglement between the spins at all length scales.

The ground states of  figure 2 have been observed by
Christian Rüegg and collaborators2 in TlCuCl3, with g tuned
by applied pressure. The distinct low- energy excitations of
the two noncritical ground states have been detected in neu-
tron scattering and are described in box 1. 

Quantum criticality
We turn, at last, to the experimental significance of the iso-
lated quantum critical point at g = gc, on which we have lav-
ished much attention above. For that, we need to consider the
influence of a nonzero temperature on the quantum phase
transition in the ground state. As we will see, the transition
leaves a clear fingerprint on a large portion of the T > 0 phase
diagram.3

Figure 3 sketches the phase diagram in the Tg-plane for
the dimer antiferromagnet of  figure 2. Above the noncritical

ground states, the temperature will excite the states de-
scribed in box 1, as shown in the blue regions of  figure 3. The
dynamics of the waves or particles can be described by a
quasi-classical model. Box 2 shows the corresponding phase
diagram for the Ising chain.

As noted above, close to g = gc the ground-state wave-
function has the entangled critical form at lengths smaller
than ξ; at longer lengths, the wavefunction has the noncritical
product form. At finite temperatures, the system has another
characteristic length: ħc/kBT, the characteristic de Broglie
wavelength of the excitations at the quantum critical point gc
(here, c is the spin-wave velocity). When ξ < ħc/kBT (the blue
regions of figure 3), the wavefunction assumes the product
form at a length scale shorter than that at which thermal ef-
fects are manifested. So thermal fluctuations excite the non-
critical wave and particle states.

The novel quantum-critical region, colored orange in fig-
ure 3, emerges in the opposite limit, when ħc/kBT < ξ. Since ξ
diverges as ∣g − gc∣ vanishes, the region has a characteristic fan
shape. Remarkably, and somewhat paradoxically, the impor-
tance of quantum criticality increases with increasing T, far
beyond the isolated quantum critical point at T = 0. (Of
course, once the thermal energy is as large as the spin–spin
coupling J, all the arguments here break down; the phase
 diagram in  figure 3 applies only when T remains smaller than
J.) Because the de Broglie wavelength is shorter than ξ, ther-
mal fluctuations act directly on the  quantum- critical entan-
gled state. Thus we need a theory of the excitations of the
complex critical state and the manner in which they interact
with each other.

Describing the dynamics of quantum criticality is a
major challenge and the subject of much current research.
None of the analytic, semiclassical, or numerical methods of
condensed-matter physics yield accurate results, except for
some special systems in one spatial dimension. But one key
characterization that applies to essentially all strongly inter-
acting quantum critical points in two or more spatial dimen-
sions relates to the thermal equilibration time τeq. That is the
time it takes for the system to relax back to local thermal equi-
librium after it is disturbed by an arbitrary external pertur-
bation. In the quantum-critical region,4

(4)

where Ceq is a dimensionless universal number: It is inde-
pendent of the specific microscopic form of the Hamiltonian

τeq eq= ,C
k TB

�
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Figure 3. Quantum criticality extends to nonzero
temperatures. Sketched here is the phase diagram
for the model in  figure 2. In the blue region for
small g, thermal effects induce spin waves that dis-
tort the Néel antiferromagnetic ordering. For large
g, thermal fluctuations break dimers in the blue
 region and form quasiparticles called triplons, as
described in box 1. The dynamics of both types of
excitations can be described quasi-classically.
Quantum criticality appears in the intermediate
 orange region, where there is no description of the
dynamics in terms of either classical particles or
waves. Instead, the system exhibits the strongly
coupled dynamics of nontrivial entangled quantum
excitations of the quantum critical point gc.
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and depends only upon general features such as the dimen-
sionality of the system and the global spin symmetries of the
Hamiltonian. All other regimes of quantum dynamics, such
as the blue regions of  figure 3, have much longer values of
τeq. Thus quantum criticality is distinguished by its ability to
relax to thermal equilibrium in the shortest possible time. Fur-
thermore, that time is the shortest allowed by quantum
 mechanics, so a system in the quantum-critical region can be
viewed as a nearly perfect fluid. (For more on nearly perfect
fluids, see the special issue of PHYSICS TODAY, May 2010.)

Equation 4 has important consequences for the spin fluc-
tuation spectrum in the quantum-critical region, as measured
by neutron scattering experiments. The spectral intensity for
an excitation with energy ħω depends only on the thermal
energy kBT and not on any energy (like the exchange interac-
tion J) in the Hamiltonian. That sole dependence on kBT is
unique to the quantum-critical region; it does not hold for the
blue regions in figure 3. Measurements of the spectrum in the
orange region at different temperatures fall on the same
curve when plotted as a function of ħω/kBT. Precisely such a
spectrum has been observed for spin-1⁄2 ions in 1D and geo-
metrically frustrated 2D lattices and in copper oxide super-
conductors and rare-earth intermetallic compounds near the
quantum phase transition to antiferromagnetism.5

The motions of conserved quantities like spin, charge, or
momentum also enjoy a remarkable universality under quan-
tum criticality. The collisional and dissipative processes that
establish local equilibrium are similar to those that determine
the coefficients of various friction forces impeding the motion
of conserved quantities. Consequently, it follows from the
universality of  equation 4 that the friction coefficients are also
universal. For example, for the linear momentum of a quan-
tum-critical fluid, the associated “friction” is measured by the
shear viscosity η, given by

(5)

where s is the entropy density and Cm is another universal di-
mensionless number of order unity.6 It has so far not been
possible to measure the value of η for interacting electrons in
quantum matter. However, such measurements are more nat-
ural in ultracold atoms and the quark–gluon plasma and
have been measured in those systems7 (see the articles by
John Thomas and by Barbara Jacak and Peter Steinberg,

PHYSICS TODAY, May 2010, pages 34 and 39). The universality
of quantum-critical transport also extends to charge and spin
transport and to their associated conductivities.

In some simpler cases, mainly in insulators, the quantum
critical point at g = gc is described by a mathematical frame-
work known as a conformal field theory (CFT). Well known in
statistical mechanics and string theory, CFTs enjoy a large
group of spacetime symmetries, including relativistic invari-
ance and scale invariance. In particular, the simple square-
 lattice model in  figure 2 with the Hamiltonian in  equation 3
has a critical point described by a CFT in which the velocity of
light is replaced by the spin-wave velocity. The analytic under-
standing of quantum criticality is most advanced for those
 critical points described by CFTs. That is partly due to the dis-
covery of the so-called AdS/CFT correspondence, which re-
lates quantum criticality to dynamics near the horizon of a
black hole in a particular spacetime geometry, known as anti–
de Sitter (AdS) space, that has one more spatial dimension than
the CFT (see the article by Igor Klebanov and Juan  Maldacena,
PHYSICS TODAY, January 2009, page 28). Remarkably, the char-
acteristic quantum-critical time in  equation 4 is mapped onto
the damping time of quasi-normal modes of the gravitational,
electromagnetic, and other fields around the black hole, with
T mapped onto the temperature of Hawking radiation of the
black hole. In the past two years, much research has gone
 toward extending such string- theory- inspired ideas to quan-
tum criticality not associated with a relativistic CFT, and some
very promising results are being obtained.8

Metals and superconductors
We have discussed insulators so far, but the majority of the
experimental work on novel quantum phases and their quan-
tum phase transitions has focused on metallic compounds.
The landscape of crystalline materials combining three or
more elements is vast, and new experimental discoveries con-
tinue unabated. Among the most celebrated examples are the
copper oxide compounds (the cuprates), such as La2−xSrxCuO4,
that display high-temperature superconductivity. In a partic-
ular stoichiometric limit, cuprates are good insulators that dis-
play Néel order similar to that in TlCuCl3. However, by vary-
ing the relative concentration of elements, one can dope the
materials with mobile charge carriers and eventually, for
 sufficiently high dopant densities, turn them into good met-
als. Along the way, high-temperature superconductivity is

= ,Cm kBs

�η
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The one-dimensional quantum Ising chain, as found in cobalt
niobate (CoNb2O6), has the attraction that many aspects can be
solved theoretically for nearest-neighbor interactions, even at
finite temperature. This plot shows the normalized value of the
temperature derivative of the inverse spin correlation length,
dξ−1/dT; that quantity is a measure of the strength of interactions
between thermal excitations. The derivative has a temperature
dependence similar to that of the temperature derivative of the
inverse thermal equilibration time, τeq

−1, of nonintegrable strongly
interacting quantum critical points. In the quantum-critical
regime, τeq

−1 ~ T and the system approaches a nearly perfect fluid.
Outside of the quantum-critical region, the system adopts differ-
ent spin configurations. Excitations in the ferromagnetic regime,
g < gc, have the two spin orderings of  equation 1, separated by
domain walls; for g > gc, the paramagnetic state of  equation  2
has reversed-spin excitations that are anti parallel to the applied
magnetic field.

Box 2. Thermal excitations in the quantum Ising chain
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 observed. Such changes clearly set up numerous possibilities
for interesting quantum phase transitions. More recent exam-
ples are the iron-based pnictide compounds such as
BaFe2(As1−xPx)2, which display a similar set of phases, includ-
ing superconductivity.

At the heart of the quantum phase transitions of those
materials is a new ingredient not found in insulators: the
Fermi surface. In the simplest theory of a metal, electrons
 occupy plane-wave states that are eigenstates of momentum,
and the set of  lowest- energy occupied states is bounded in
momentum space by the Fermi surface. That surface is of
great physical significance because it is the locus of crucial
low-energy excitations of the metal. Electrons move from
 occupied states just below the Fermi surface to unoccupied
states just above it. When a metal undergoes a quantum
phase transition, such as the onset of Néel order, the shape
of the Fermi surface changes significantly. So a theory of the
Néel-ordering quantum critical point in a metal must account
not only for the collective spin fluctuations—spin waves and
triplons—associated with the onset of Néel order, just as in
an insulator, but also for the concomitant change in shape of
the Fermi surface and the associated changes in the occupied
electron states.

Much theoretical effort has been expended in the past
two decades in trying to understand the simplest paradigms
of quantum phase transitions in metals.9 Some theories ap-
pear to be reasonably well understood in three spatial dimen-
sions. But the 2D case is of central importance, because most
of the interesting experimental examples of metallic quantum

phase transitions are in compounds, such as the copper- and
iron-based materials just noted, in which the electron motion
is primarily along single crystalline planes. All current theo-
ries have very strongly coupled spin and charge transitions
in two spatial dimensions, and only limited results are avail-
able so far.10

In experimental studies of quantum phase transitions
with Fermi-surface changes in 2D metals, a ubiquitous fea-
ture is so-called strange-metal behavior. One hallmark of the
strange-metal regime is that the electrical resistivity ρ is lin-
early proportional to the temperature T. That behavior is in
stark contrast to the predictions of the standard Fermi- liquid
theory of metals, which has ρ ~ T 2 at low temperatures.

 Figure 4 shows several examples of strange-metal behav-
ior. It is found in regions shaped very much like the quantum-
critical regions of the insulators discussed above. That similar-
ity supports the interpretation of strange metals as the
quantum-critical regions of the quantum phase transitions in-
volving changes in the Fermi surfaces of metals. In the phase
diagrams11,12 of iron-based BaFe2(As1−xPx)2 in  figure 4a and the
electron-doped cuprate Pr2–xCexCuO4 in  figure 4b, it is also
clear that the Fermi-surface change is linked to the onset of
 antiferromagnetism. Curiously, the phase diagram13 for the
hole-doped cuprate La2−xSrxCuO4 could be interpreted in terms
of a novel  quantum- critical phase, in which the long-range en-
tangled ground state at absolute zero exists over a small but
finite range of g rather than at a single critical point gc.

Another notable feature of  figure 4 is that at low temper-
atures, “bare” quantum criticality is invariably preempted by

200

100

0

T
E

M
P

E
R

A
T

U
R

E
(K

)
T

E
M

P
E

R
A

T
U

R
E

(K
)

T
E

M
P

E
R

A
T

U
R

E
(K

)
0 0.2 0.4 0.6

DOPING x

DOPING x

α

α

α

2.0

2.0

1.5

1.0

1.0

2.0

1.5

1.0

0

10

8

6

4

2

0
0.15 0.16 0.17 0.18 0.19

SDW

20

15

10

5

0 2 4 6 8 10 12 14
MAGNETIC FIELD (T)

SDW

Superconductivity

Pr Ce CuO2− 4x x

BaFe (As P )2 1− 2x x

Sr Ru O3 72

× 2

a

b c

Figure 4. Resistivity plots for
various correlated-electron ma-
terials. The colors represent the
exponent α that describes the
temperature dependence of the
resistivity ρ: ρ ~ ρ0 + ATα. The fan
shapes of so-called strange-
 metal behavior, where α ≈ 1, 
can be interpreted as regions 
of quantum criticality. (a) The
iron-based pnictide compound
BaFe2(As1−xPx)2 can be doped
with charge carriers. For low
doping and low temperatures,
the material exhibits a spin-
 density wave (SDW)—that is,
anti ferromagnetic order in a
metal. For higher doping, the
material turns superconducting
at low temperatures. The shape
symbols show the experimen-
tally measured phase bound-
aries.11 (b) The electron-doped
copper oxide superconductor
Pr2−xCexCuO4 behaves similarly.
Here its superconductivity has
been suppressed by an applied
magnetic field.12 (c) In the
ruthenate Sr3Ru2O7 at low tem-
perature near the critical mag-
netic field (brown region), the
electronic motion breaks the 
underlying crystal symmetry and
instead has an ordering resem-
bling nematic liquid crystals.17

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

149.156.24.54 On: Wed, 27 Nov 2013 19:34:55



another phase. The most prominent and common example is
the appearance of unconventional superconductivity, as is
found in the copper oxides and the iron pnictides. Whereas
in traditional superconductors a Cooper pair’s electronic
wavefunction is isotropic in space, in unconventional super-
conductors the pair wavefunction has a nontrivial spatial
 dependence and changes sign between different regions of
momentum space. Signatures of such a sign change have
been found in numerous beautiful experiments. The theory
of antiferromagnetic quantum criticality in metals also has
clear signatures of instabilities to such unconventional super-
conductivity near the quantum critical point.

Another interesting instability of metallic quantum crit-
icality is the so-called electronic nematic state. In that state,
electron motion spontaneously breaks the crystal’s rotation
symmetry in a manner analogous to the onset of  liquid-
 crystalline order in complex fluids. The electronic nematic
state was first identified14 in Sr3Ru2O7 (figure 4c), and evi-
dence has since been found for substantial nematic correla-
tions in the copper- and iron-based superconductors close to
their antiferromagnetically ordered phases.15

The nucleation of new types of quantum order near
quantum phase transitions makes the transitions an impor-
tant resource for materials physics: They are guiding the
search for new material properties of potential technological
importance. For the future, we need a comprehensive theory
of such  multiple- ordering phenomena and their interplay
with electronic excitations near the Fermi surface. In partic-
ular, a full understanding of nonlinear effects between vari-
ous orders is needed—how one static or fluctuating order en-
hances or suppresses other orderings. That understanding
will help describe the phase diagrams in a strong magnetic

field, which can provide a second tuning parameter in some
systems.16 Such experimental phase diagrams have emerged
as key tests of theoretical proposals. With the rapid progress
over the past few years, we are well on our way toward a sys-
tematic description of quantum criticality and competing or-
ders in metals with strong electronic correlations.
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